已知a,b,c是三角形abc內角,向量m1,根號

2022-02-25 11:41:04 字數 661 閱讀 7535

1樓:匿名使用者

m.n=1

(-1,√3).( cosa, sin a)=1-cosa+√3sin a =1

(√3sin a)^2 = (1+cosa)^22(cosa)^2 + cosa -1 =0(2cosa-1)(cosa+1)=0

cosa = 1/2 or -1 (rejected)a = π/3

(1+sin2b)/(cos^b-sin^b)=-3(1+ sin2b) /cos2b = -3sec2b+ tan2b = -3

(3+tan2b)^2 = (sec2b)^26tan2b+ 9 = 1

tan2b = -4/3

2tanb/(1-(tanb)^2 ) = -4/3-4+4(tanb)^2 = 6tanb

2(tanb)^2 -3tanb-2 =0(2tanb+1)(tanb-2) =0

tanb = 2 or -1/2 (rejected)ie tanb = 2

tanc

= tan(π-a-b)

= tan(2π/3-b)

= (tan2π/3 - tanb)/(1+tanbtan2π/3)=(-√3-2)/(1-2√3)

= ( √3+2)(2√3+1)/ [(2√3-1)(2√3+1)]= (8+5√3)/5

已知a,b,c分別為三角形abc內角a,b,c的對邊,a

解 1 acosc 3asinc b c 0 sinacosc 3sinasinc sinb sinc 0 sinacosc 3sinasinc sinb sinc sin a c sinc sinacosc sinccosa sinc sinc 0 3 sina cosa 1 sin a 30 1...

已知角abc為三角形abc的三內角,其對邊分別為a,b,c,若a 2 b 2 c 2 bc且

1 已知a b c bc 1 所以,bc b c a 由余弦定理有 cosa b c a 2bc bc bc 1 2 所以,a 120 s abc 1 2 bcsina 3 1 2 bc 3 2 3 bc 4 由 1 式得到 12 b c bc b c 12 bc 12 4 8 b c 2bc 8 ...

已知角abc為三角形abc的三內角,其對邊分別為a,b,c,若a 2 b 2 c 2 bc且a

1 已知a b c bc 1 所以,bc b c a 由余弦定理有 cosa b c a 2bc bc bc 1 2 所以,a 120 s abc 1 2 bcsina 3 1 2 bc 3 2 3 bc 4 由 1 式得到 12 b c bc b c 12 bc 12 4 8 b c 2bc 8 ...