用湊微分法求下列不定積分1xlnxdx

2021-03-04 04:29:04 字數 5741 閱讀 6389

1樓:午後藍山

∫(1/xlnx)dx

=∫(lnx)dlnx

=1/2(lnx)^2+c

2樓:匿名使用者

解答:∫(1/xlnx)dx =∫(1/lnx)dlnx =ln|lnx|+c

1/xlnxlnlnx怎麼用湊微分法求不定積分

3樓:野狼

答案是1/2(lnx)^2+c 具體步驟如下: ∫(1/xlnx)dx =∫(lnx)dlnx =1/2(lnx)^2+c 擴充套件資料不定積分的公式 1、∫ a dx = ax + c,a和c都是常數 2、∫ x^a dx = [x^(a + 1)]/(a + 1) + c,其中a為常數且 a ≠ -1 3、∫ 1/x dx = ln|x| + c 4、∫ a^x dx = (1/lna)a^x + c,其中a > 0 且 a ≠ 1 5、∫ e^x dx = e^x + c 6、∫ cosx dx = sinx + c 7、∫ sinx dx = - cosx + c

4樓:匿名使用者

答案是lnlnlnx

1lnx/(xlnx)平方的不定積分

5樓:匿名使用者

題幹少打了一個加號吧,這道題要用湊微分法,觀察得到(xlnx)'=1+lnx

∫(1+lnx)dx/(xlnx)²

=∫d(xlnx)/(xlnx)²

=-1/(xlnx)+c

6樓:匿名使用者

^^fx =(lnx+1)/e^x f'(x)=[(e^x)/x-e^x(lnx+1)]/e^2x=[1-x(lnx+1)]/xe^x f'(1)=0 f(1)=1/e ∴切線方程y=1/e h(x)=1-x-xlnx h'(x)=-1-1-lnx=-2-lnx 駐點:x=1/e2 h''(x)=-1/x<0 ∴f(1/e2)=1-1/e2+2/e2=1+1/e2是最版大權值

換元積分法求不定積分∫1+lnx/(xlnx)^2dx

7樓:匿名使用者

∫1+lnx/(xlnx)^2dx

因為xlnx的導數是1+lnx,所以可以利用第一類換元積分法:

=∫1/(xlnx)^2d(xlnx)

=-1/(xlnx)+c

8樓:匿名使用者

∫1+lnx/(xlnx)^2dx=∫1/(xlnx)^2d(xlnx)=-1/(xlnx)+c

9樓:

^分部積分啦!

過程如下:∫xlnx/[(1+x^2)^2]dx

=(-1/2)∫lnxd(1/(1+x^2))

=(-1/2)lnx/(1+x^2)+(1/2)∫1/[(1+x^2)*x]dx

=(-1/2)lnx/(1+x^2)+(1/2)∫x/[(1+x^2)*x^2]dx

=(-1/2)lnx/(1+x^2)+(1/4)∫1/[(1+x^2)*x^2]d(x^2)

=(-1/2)lnx/(1+x^2)+(1/4)∫[1/x^2-1/(1+x^2)]d(x^2)

=(-1/2)lnx/(1+x^2)+(1/4)[ln(x^2)-ln(1+x^2)]+c

=(-1/2)lnx/(1+x^2)+(1/4)ln[x^2/(1+x^2)]+c

誰知道不定積分∫xln(x+1)dx是多少啊?

10樓:匿名使用者

∫xln(x-1)dx

利用分部積分法:

=1/2∫ln(1+x)dx²

=1/2x²ln(1+x)-1/2∫x²dln(1+x)

=1/2x²ln(1+x)-1/2∫x²/(1+x) dx

分解多項式,變換積分形式:

=1/2x²ln(1+x)-1/2∫(x²-1+1)/(1+x) dx

=1/2x²ln(1+x)-1/2∫[(x²-1)/(x+1)+1/(1+x)] dx

=1/2x²ln(1+x)-1/2∫[(x-1)+1/(1+x)] dx

=1/2x²ln(1+x)-1/2[x²/2-x+ln(1+x)]+c

擴充套件資料:

求函式f(x)的不定積分,就是要求出f(x)的所有的原函式,由原函式的性質可知,只要求出函式f(x)的一個原函式,再加上任意的常數c就得到函式f(x)的不定積分。

求不定積分的方法:

1、換元積分法:

可分為第一類換元法與第二類換元法。

第一類換元法(即湊微分法)

第二類換元法經常用於消去被積函式中的根式。當被積函式是次數很高的二項式的時候,為了避免繁瑣的式,有時也可以使用第二類換元法求解。

2、分部積分法

公式:∫udv=uv-∫vdu

11樓:匿名使用者

^∫xln(x-1)dx=x^2/2* ln(x-1)-x^2/4-x/2-ln(x-1)/2+c。

解答過程如下:利用分部積分法可求得

∫xln(x-1)dx

=1/2x²ln(1+x)-1/2[x²/2-x+ln(1+x)]+c∫x ln(x-1)dx=x^2/2* ln(x-1)-∫x^2/2ln(x-1)'dx

=x^2/2* ln(x-1)-∫x^2/2(x-1)dx

=x^2/2* ln(x-1)-∫(x^2-x)/2(x-1)dx-∫x/2(x-1)dx

=x^2/2* ln(x-1)-∫x/2dx-∫x/2(x-1)dx

=x^2/2* ln(x-1)-x^2/4-∫x/2(x-1)dx

=x^2/2* ln(x-1)-x^2/4-∫(x-1)/2(x-1)dx-∫1/2(x-1)dx

=x^2/2* ln(x-1)-x^2/4-∫1/2dx-∫1/2(x-1)d(x-1)

=x^2/2* ln(x-1)-x^2/4-x/2-∫1/2(x-1)d(x-1)

=x^2/2* ln(x-1)-x^2/4-x/2-ln(x-1)/2+c

擴充套件資料

分部積分法兩個原則

1、相對來說,誰易湊到微分後面,就湊誰;

2、交換位置之後的積分容易求出。

經驗順序:對,反,冪,三,指

誰在後面就把誰湊到微分的後面去,比如,如果被積函式有指數函式,就優先把指數湊到微分的後面去,如果沒有就考慮把三角函式湊到後面去,在考慮冪函式。

當然,對數函式和反三角函式,這兩個函式比較難惹,你千萬不要動它。需要注意的是經驗順序不是絕對的,而是一個籠統的順序,掌握兩大原則更重要。

12樓:我薇號

【xlnx】′=1+lnx 所以對lnx積分=xlnx -x

【x²lnx】=2xlnx+x所以對2xlnx積分=x²lnx-x²/2

∫xln(x-1)dx

=∫【(x-1)ln(x-1)+ln(x-1)】d(x-1)

分別積分

=0.5*(x-1)²ln(x-1)-0.25(x-1)² + (x-1)ln(x-1)-(x-1)+c

可以。思路就是這樣。

或者xln(x-1)dx = 1/2 ln(x-1)d(x²)

∫xln(x-1)dx

=1/2∫ln(x-1)d(x²)

=1/2【x²ln(x-1)- ∫x²*[1/(x-1)]dx】

1/2∫x²*[1/(x-1)]dx = 1/2∫[x+1+1/(x-1)]dx = 1/4x²+x/2+1/2ln(x-1)+ c

希望對你有幫助o(∩_∩)o~ 強調一點,這裡的x-1不能帶絕對值,因為定義域就是x-1>0的。帶絕對值擴大定義域了。

求不定積分∫xlnx/((1+x∧2)∧3/2)dx

13樓:demon陌

^∫[xlnx/(1+x^2)^3/2]dx

=-lnx/√(1+x^2)+∫dx/[x√(1+x^2)] (應用分部積分法)

=-lnx/√(1+x^2)+∫csctdt (令x=tant)

=-lnx/√(1+x^2)-ln│csct+cott│+c (c是常數)

=-lnx/√(1+x^2)-ln│[1+√(1+x^2)]/x│+c

如果f(x)在區間i上有原函式,即有一個函式f(x)使對任意x∈i,都有f'(x)=f(x),那麼對任何常數顯然也有[f(x)+c]'=f(x).即對任何常數c,函式f(x)+c也是f(x)的原函式。這說明如果f(x)有一個原函式,那麼f(x)就有無限多個原函式。

求不定積分∫xln(1+x)dx

14樓:鍾離半雪首希

你好:為您提供精確解答

∫xln(x²+1)dx

=(1/2)∫ln(x²+1)dx²

=(1/2)∫ln(x²+1)d(x²+1)=(1/2)[(x²+1)ln(x²+1)-∫(x²+1)dln(x²+1)]

=(1/2)[(x²+1)ln(x²+1)-∫1d(x²+1)]=(1/2)[(x²+1)ln(x²+1)-(x²+1)]+c=(1/2)(x²+1)+c

答案不唯一,因為c是常數,所以僅僅會有常數的差別。

此題經過仔細驗證,完全無誤。放心使用。

謝謝,不懂可追問

學習寶典團隊為你解答

15樓:我是一個麻瓜啊

∫xln(1+x)dx的解答過程如下:

擴充套件資料:分部積分:

(uv)'=u'v+uv'

得:u'v=(uv)'-uv'

兩邊積分得:∫ u'v dx=∫ (uv)' dx - ∫ uv' dx

即:∫ u'v dx = uv - ∫ uv' d,這就是分部積分公式

也可簡寫為:∫ v du = uv - ∫ u dv常用積分公式:

1)∫0dx=c

2)∫x^udx=(x^(u+1))/(u+1)+c3)∫1/xdx=ln|x|+c

4)∫a^xdx=(a^x)/lna+c

5)∫e^xdx=e^x+c

6)∫sinxdx=-cosx+c

7)∫cosxdx=sinx+c

8)∫1/(cosx)^2dx=tanx+c9)∫1/(sinx)^2dx=-cotx+c10)∫1/√(1-x^2) dx=arcsinx+c

16樓:赫全宗書

用分佈積分公式

∫uv'=uv-∫u'v

把x看成u

ln(x+1)看成v

所以原式=(x*x/2)*ln(x+1)-(1/2)∫(x*x)/(x+1)dx

再看∫(x*x)/(x+1)dx=∫[(x+1)(x-1)+1]/(x+1)dx

=∫[(x-1)+1/(x+1)]dx

=∫(x-1)dx+∫1/(x+1)dx

=∫xdx-∫dx+∫1/(x+1)d(x+1)=1/(2x*x)-x+ln|x+1|

把這個結果代入上式即可

17樓:匿名使用者

^u=x^2 v=ln(1+x) du=2xdx, dv=1/(1+x)dx

∫xln(1+x)dx=1/2∫vdu=1/2uv-1/2∫udv=1/2uv-1/2∫x^2/(1+x)dx=1/2x^2ln(1+x)-1/2∫[(x^2-1+1)/(1+x)]dx

=1/2x^2ln(1+x)-1/2∫[x-1+1/(1+x)]dx=1/2x^2ln(1+x)-1/4x^2+1/2x-1/2ln(1+x)+c

=1/2(x^2-1)ln(1+x)-1/4x^2+1/2x+c

求不定積分xln 1 2x ,求不定積分 xln(1 x)dx

解 因為 1 2 x 2ln 1 2x xln 1 2x x 2 1 2x 後式 x 2 2x 1 4 2x 1 4 3 4 3 4 2x 1 1 2 x 1 2 1 3 4 1 2x 1 2 x 3 2 3 2 1 2x 原式 1 2 1 2 1 2 x 2ln 1 2x x 2 4 3x 4 3...

求助xdx根號下1x的值,求不定積分,根號下x11根號下x11dx

令 copy 1 x t,則x t 1 xdx 1 x t 1 t d t 1 t 1 2t t dt 2 t 1 dt t 2t c t 3 t c x 1 3 1 x c x 2 1 x c 求不定積分,根號下 x 1 1 根號下 x 1 1 dx 具體回答如圖 一個函式,可以存在不定積分,而不...

用待定係數法求不定積分 x 1 x 2 2x

分母 x 1 2 5,因為分母無法,因此不能使用待定係數法 可以使用餘切積分公式 有理函式求不定積分時的待定係數法拆項到底是咋個拆的能說具體點嗎 有理函式是指由兩多項式的商所表示的函式具體形式如下 p x q x a0 x n a1 x n 1 an 1 x 1 an b0 x m b1 x m 1...