1樓:我不是他舅
^∫xln(1+x^2)dx
=1/2∫版ln(1+x^權2)dx^2
=1/2∫ln(1+x^2)d(1+x^2)=1/2(1+x^2)ln(1+x^2)-1/2∫(1+x^2)dln(1+x^2)
=1/2(1+x^2)ln(1+x^2)-1/2∫(1+x^2)*1/(1+x^2)d(1+x^2)
=1/2(1+x^2)ln(1+x^2)-1/2∫dx^2=1/2(1+x^2)ln(1+x^2)-1/2x^2+c
2樓:匿名使用者
令u=x^2,則du=2xdx,∫xln(1+x^2)dx=(1/2)∫ln(1+u)du,然後用分步積分就行了
3樓:匿名使用者
∫xln(1+x^2)dx=∫1/2*ln(1+x^2)d(x^2+1)=1/2*(x^2+1)*(ln(x^2+1)-1)
求不定積分∫xln(1+x)dx
4樓:鍾離半雪首希
你好:為您提供精確解答
∫xln(x²+1)dx
=(1/2)∫ln(x²+1)dx²
=(1/2)∫ln(x²+1)d(x²+1)=(1/2)[(x²+1)ln(x²+1)-∫(x²+1)dln(x²+1)]
=(1/2)[(x²+1)ln(x²+1)-∫1d(x²+1)]=(1/2)[(x²+1)ln(x²+1)-(x²+1)]+c=(1/2)(x²+1)+c
答案不唯一,因為c是常數,所以僅僅會有常數的差別。
此題經過仔細驗證,完全無誤。放心使用。
謝謝,不懂可追問
學習寶典團隊為你解答
5樓:我是一個麻瓜啊
∫xln(1+x)dx的解答過程如下:
擴充套件資料:分部積分:
(uv)'=u'v+uv'
得:u'v=(uv)'-uv'
兩邊積分得:∫ u'v dx=∫ (uv)' dx - ∫ uv' dx
即:∫ u'v dx = uv - ∫ uv' d,這就是分部積分公式
也可簡寫為:∫ v du = uv - ∫ u dv常用積分公式:
1)∫0dx=c
2)∫x^udx=(x^(u+1))/(u+1)+c3)∫1/xdx=ln|x|+c
4)∫a^xdx=(a^x)/lna+c
5)∫e^xdx=e^x+c
6)∫sinxdx=-cosx+c
7)∫cosxdx=sinx+c
8)∫1/(cosx)^2dx=tanx+c9)∫1/(sinx)^2dx=-cotx+c10)∫1/√(1-x^2) dx=arcsinx+c
6樓:赫全宗書
用分佈積分公式
∫uv'=uv-∫u'v
把x看成u
ln(x+1)看成v
所以原式=(x*x/2)*ln(x+1)-(1/2)∫(x*x)/(x+1)dx
再看∫(x*x)/(x+1)dx=∫[(x+1)(x-1)+1]/(x+1)dx
=∫[(x-1)+1/(x+1)]dx
=∫(x-1)dx+∫1/(x+1)dx
=∫xdx-∫dx+∫1/(x+1)d(x+1)=1/(2x*x)-x+ln|x+1|
把這個結果代入上式即可
7樓:匿名使用者
^u=x^2 v=ln(1+x) du=2xdx, dv=1/(1+x)dx
∫xln(1+x)dx=1/2∫vdu=1/2uv-1/2∫udv=1/2uv-1/2∫x^2/(1+x)dx=1/2x^2ln(1+x)-1/2∫[(x^2-1+1)/(1+x)]dx
=1/2x^2ln(1+x)-1/2∫[x-1+1/(1+x)]dx=1/2x^2ln(1+x)-1/4x^2+1/2x-1/2ln(1+x)+c
=1/2(x^2-1)ln(1+x)-1/4x^2+1/2x+c
求xln(1+x^2)dx的積分
8樓:所示無恆
^^∫xln(1+x^zhi2)dx
=1/2∫ln(1+x^dao2)dx^2=1/2∫ln(1+x^2)d(1+x^2)=1/2(1+x^2)ln(1+x^2)-1/2∫(1+x^2)dln(1+x^2)
=1/2(1+x^2)ln(1+x^2)-1/2∫(1+x^2)*1/(1+x^2)d(1+x^2)
=1/2(1+x^2)ln(1+x^2)-1/2∫dx^2=1/2(1+x^2)ln(1+x^2)-1/2x^2+c
9樓:我不是他舅
^^∫xln(1+x^du2)dx
=1/2∫zhiln(1+x^dao2)dx^2=1/2∫ln(1+x^2)d(1+x^2)=1/2(1+x^2)ln(1+x^2)-∫(1+x^2)dln(1+x^2)
=1/2(1+x^2)ln(1+x^2)-∫(1+x^2)*1/(1+x^2)d(1+x^2)
=1/2(1+x^2)ln(1+x^2)-∫d(x^2)=1/2(1+x^2)ln(1+x^2)-x^2+c
10樓:希望天使在人間
=1/2 *ln(1+x^2)dx^2
=1/2*ln(1+x^2)d(1+x^2)=1/2*1/2(1+x^2)^2
=1/4(1+x^2)^2
11樓:匿名使用者
先還原,然後再分部積就行了
12樓:匿名使用者
^∫xln(1+x^zhi2)dx
=(1/2)∫daoln(1+x^專2)d(x^2) 設x^2=u=(1/2)∫ln(1+u)du
=(1/2)[uln(1+u)-∫u/(1+u)du]=(1/2)[uln(1+u)-∫1-1/(1+u)du]=(1/2)[uln(1+u)-u-ln(1+u)]+c 轉換回去屬=(1/2)[x^2ln(1+x^2)-x^2+ln(1+x^2)]+c
誰知道不定積分∫xln(x+1)dx是多少啊?
13樓:匿名使用者
∫xln(x-1)dx
利用分部積分法:
=1/2∫ln(1+x)dx²
=1/2x²ln(1+x)-1/2∫x²dln(1+x)
=1/2x²ln(1+x)-1/2∫x²/(1+x) dx
分解多項式,變換積分形式:
=1/2x²ln(1+x)-1/2∫(x²-1+1)/(1+x) dx
=1/2x²ln(1+x)-1/2∫[(x²-1)/(x+1)+1/(1+x)] dx
=1/2x²ln(1+x)-1/2∫[(x-1)+1/(1+x)] dx
=1/2x²ln(1+x)-1/2[x²/2-x+ln(1+x)]+c
擴充套件資料:
求函式f(x)的不定積分,就是要求出f(x)的所有的原函式,由原函式的性質可知,只要求出函式f(x)的一個原函式,再加上任意的常數c就得到函式f(x)的不定積分。
求不定積分的方法:
1、換元積分法:
可分為第一類換元法與第二類換元法。
第一類換元法(即湊微分法)
第二類換元法經常用於消去被積函式中的根式。當被積函式是次數很高的二項式的時候,為了避免繁瑣的式,有時也可以使用第二類換元法求解。
2、分部積分法
公式:∫udv=uv-∫vdu
14樓:匿名使用者
^∫xln(x-1)dx=x^2/2* ln(x-1)-x^2/4-x/2-ln(x-1)/2+c。
解答過程如下:利用分部積分法可求得
∫xln(x-1)dx
=1/2x²ln(1+x)-1/2[x²/2-x+ln(1+x)]+c∫x ln(x-1)dx=x^2/2* ln(x-1)-∫x^2/2ln(x-1)'dx
=x^2/2* ln(x-1)-∫x^2/2(x-1)dx
=x^2/2* ln(x-1)-∫(x^2-x)/2(x-1)dx-∫x/2(x-1)dx
=x^2/2* ln(x-1)-∫x/2dx-∫x/2(x-1)dx
=x^2/2* ln(x-1)-x^2/4-∫x/2(x-1)dx
=x^2/2* ln(x-1)-x^2/4-∫(x-1)/2(x-1)dx-∫1/2(x-1)dx
=x^2/2* ln(x-1)-x^2/4-∫1/2dx-∫1/2(x-1)d(x-1)
=x^2/2* ln(x-1)-x^2/4-x/2-∫1/2(x-1)d(x-1)
=x^2/2* ln(x-1)-x^2/4-x/2-ln(x-1)/2+c
擴充套件資料
分部積分法兩個原則
1、相對來說,誰易湊到微分後面,就湊誰;
2、交換位置之後的積分容易求出。
經驗順序:對,反,冪,三,指
誰在後面就把誰湊到微分的後面去,比如,如果被積函式有指數函式,就優先把指數湊到微分的後面去,如果沒有就考慮把三角函式湊到後面去,在考慮冪函式。
當然,對數函式和反三角函式,這兩個函式比較難惹,你千萬不要動它。需要注意的是經驗順序不是絕對的,而是一個籠統的順序,掌握兩大原則更重要。
15樓:我薇號
【xlnx】′=1+lnx 所以對lnx積分=xlnx -x
【x²lnx】=2xlnx+x所以對2xlnx積分=x²lnx-x²/2
∫xln(x-1)dx
=∫【(x-1)ln(x-1)+ln(x-1)】d(x-1)
分別積分
=0.5*(x-1)²ln(x-1)-0.25(x-1)² + (x-1)ln(x-1)-(x-1)+c
可以。思路就是這樣。
或者xln(x-1)dx = 1/2 ln(x-1)d(x²)
∫xln(x-1)dx
=1/2∫ln(x-1)d(x²)
=1/2【x²ln(x-1)- ∫x²*[1/(x-1)]dx】
1/2∫x²*[1/(x-1)]dx = 1/2∫[x+1+1/(x-1)]dx = 1/4x²+x/2+1/2ln(x-1)+ c
希望對你有幫助o(∩_∩)o~ 強調一點,這裡的x-1不能帶絕對值,因為定義域就是x-1>0的。帶絕對值擴大定義域了。
不定積分 xln(1+x^2)dx
16樓:所示無恆
=1/2∫ln(1+x^2)dx^2
=1/2∫ln(1+x^2)d(1+x^2)=1/2(1+x^2)ln(1+x^2)-1/2∫(1+x^2)dln(1+x^2)
=1/2(1+x^2)ln(1+x^2)-1/2∫(1+x^2)*1/(1+x^2)d(1+x^2)
=1/2(1+x^2)ln(1+x^2)-1/2∫dx^2=1/2(1+x^2)ln(1+x^2)-1/2x^2+c
17樓:喵喵要皮卡丘
原式=1/2∫
ln(1+x∧
2)d(x∧2)=1/2x∧2 ln(1+x∧2)-∫(x∧3/(1+x∧2))dx=1/2x∧2ln(1+x²)-∫(x-x/(1+x²))dx=1/2(1+x²)ln(1+x²)-1/2x²+c
求不定積分∫xln(x^2+1)dx (要具體步驟)
18樓:匿名使用者
=[ln(x^2+1)dx^2/2=1/2[ln(x^2+1)d(x^2+1)再用分部積分得=(x^2+1)ln(x^2+1)-(x^2+1)+c
求不定積分xln 1 2x ,求不定積分 xln(1 x)dx
解 因為 1 2 x 2ln 1 2x xln 1 2x x 2 1 2x 後式 x 2 2x 1 4 2x 1 4 3 4 3 4 2x 1 1 2 x 1 2 1 3 4 1 2x 1 2 x 3 2 3 2 1 2x 原式 1 2 1 2 1 2 x 2ln 1 2x x 2 4 3x 4 3...
ln 1 x 2 dx,不定積分 ln 1 x 2 dx 過程
ln 1 x dx xln 1 x xd ln 1 x xln 1 x x 2x 1 x dx xln 1 x 2 x 1 x dx xln 1 x 2 1 1 1 x dx xln 1 x 2x 2arctanx c擴充套件資料不定積分的公式 1 a dx ax c,a和c都是常數2 x a dx...
求不定積分sin 2x1 cosx dx
2sinxcosxdx 1 cosx 2 cosxd cosx 1 cosx 2 cosxd ln 1 cosx 使用分部積分法得到下一步 2cosxln 1 cosx 2 ln 1 cosx dcosx 2cosxln 1 cosx 2 ln 1 cosx d 1 cosx 此步驟最後一項d後面變...