1樓:李軍工作室
用分部積分bai法:設u=lnx,v'=1,duu'=1/x,v=x,原式zhi=x*lnx-∫(1/x)*xdx,=xlnx-x+c。
眾所周知,微積分的兩
dao大部分是微分與回積分。一元函答數情況下,求微分實際上是求一個已知函式的導函式,而求積分是求已知導函式的原函式。所以,微分與積分互為逆運算。
定積分就是求函式f(x)在區間[a,b]中圖線下包圍的面積。即由 y=0,x=a,x=b,y=f(x)所圍成圖形的面積。這個圖形稱為曲邊梯形,特例是曲邊三角形。
1/lnx的不定積分怎麼求
2樓:angela韓雪倩
x ln (x) -x +c,(c為任意常數).
解題過程如下:
∫ ln (x) dx
=x ln (x) -∫ x d [ ln(x) ]=x ln(x) -∫ x *(1/x) dx=x ln (x) -∫ dx
=x ln (x) -x +c,(c為任意常數)在微積分中,一個函式f 的不定積分,或原函式,或反導數,是一個導數等於f 的函式 f ,即f ′ = f。
不定積分和定積分間的關係由微積分基本定理確定。其中f是f的不定積分。
3樓:匿名使用者
選項哪有1/lnx啊
4樓:匿名使用者
a=∫lnxdlnx=ln²x/2,發散
b=∫1/lnxdlnx=lnlnx,發散c=∫1/√lnxdlnx=2√lnx,發散d=∫1/ln²xdlnx=-1/lnx=-(0-1),收斂
1/lnx積分怎麼求??
5樓:drar_迪麗熱巴
x ln (x) -x +c,(c為任意常數).
解題過程如下:
∫ ln (x) dx
=x ln (x) -∫ x d [ ln(x) ]
=x ln(x) -∫ x *(1/x) dx
=x ln (x) -∫ dx
=x ln (x) -x +c,(c為任意常數)
在微積分中,一個函式f 的不定積分,或原函式,或反導數,是一個導數等於f 的函式 f ,即f ′ = f。
不定積分和定積分間的關係由微積分基本定理確定。其中f是f的不定積分。
定理一般定理
定理1:設f(x)在區間[a,b]上連續,則f(x)在[a,b]上可積。
定理2:設f(x)區間[a,b]上有界,且只有有限個間斷點,則f(x)在[a,b]上可積。
定理3:設f(x)在區間[a,b]上單調,則f(x)在[a,b]上可積。
lnx的定積分怎麼求
6樓:pasirris白沙
1、樓主的題目,沒有給出積分割槽間,下面的解答,只能是不定積分的解法;
2、積分的方法是運用分部積分;
3、若有積分割槽間,代入上下限即可。
7樓:操場的哥
用分部積分法:設u=lnx,v'=1,u'=1/x,v=x,原式=x*lnx-∫(1/x)*xdx,=xlnx-x+c。
眾所周知,微積分的兩大部分是微分與積分。一元函式情況下,求微分實際上是求一個已知函式的導函式,而求積分是求已知導函式的原函式。所以,微分與積分互為逆運算。
定積分就是求函式f(x)在區間[a,b]中圖線下包圍的面積。即由 y=0,x=a,x=b,y=f(x)所圍成圖形的面積。這個圖形稱為曲邊梯形,特例是曲邊三角形。
lnx的不定積分怎麼計算
8樓:匿名使用者
利用分步積分法:
∫lnxdx
=xlnx-∫xd(lnx)
=xlnx-∫x*1/xdx
=xlnx-∫1dx
=xlnx-x+c
在微積分中,一個函式f 的不定積分,或原函式,或反導數,是一個導數等於f 的函式 f ,即f ′ = f。不定積分和定積分間的關係由微積分基本定理確定。其中f是f的不定積分。
這樣,許多函式的定積分的計算就可以簡便地通過求不定積分來進行。
不定積分只是導數的逆運算,所以也叫做反導數。而定積分是求一個函式的圖形在一個閉區間上和 x 座標軸圍成的面積。
9樓:匿名使用者
∫lnxdx
=xlnx-∫xdlnx
=xlnx-∫x·1/xdx
=xlnx-∫dx
=xlnx-x+c
10樓:
用分部積分法即可:
∫lnxdx
=xlnx-∫xd(lnx)
=xlnx-∫1dx
=xlnx-x+c
11樓:そせ小
運用分部積分公式
∫ lnx dx
=x lnx -∫ x d(lnx)
=x lnx -∫ x 1/x dx
=x lnx -∫ 1 dx
=x lnx -x+c
12樓:匿名使用者
∫ [(lnx+x)/x] dx = ∫ lnxdx/x + ∫dx = = ∫ lnxdlnx + x = (1/2)(lnx)^2 + x + c
13樓:夜遊長安街
分部積分法
xlnx-x+c
1/(1-lnx)的積分怎麼求
14樓:夜染天下
如圖,這個式子不可積,無法求得其原函式。
1/inx的積分怎麼求?
15樓:匿名使用者
1/lnx沒有直接的公式可以用,這類問題叫做「積不出問題」。但是也可以算出來,套用常見的麥克勞林公式中的1/(1+x)這個,把1+x作替換,換成lnx就行。
lnx/(1+x)不定積分怎麼求
16樓:所示無恆
這個是超越積分,不能用初等原函式表示,可以用另外一種思路,選擇無窮級數來解題。
解題方法如下:
17樓:不是苦瓜是什麼
這個是超越積分,無法用初等原函式表示,不過可以換一種思路,可以選擇無窮級數來解題。
解題方法如下:
不定積分的公式
1、∫ a dx = ax + c,a和c都是常數2、∫ x^a dx = [x^(a + 1)]/(a + 1) + c,其中a為常數且 a ≠ -1
3、∫ 1/x dx = ln|x| + c4、∫ a^x dx = (1/lna)a^x + c,其中a > 0 且 a ≠ 1
5、∫ e^x dx = e^x + c
6、∫ cosx dx = sinx + c7、∫ sinx dx = - cosx + c
18樓:匿名使用者
這個是超越積分,無法用初等原函式表示,不過可以選擇無窮級數
lnx在[0,1]上的定積分怎麼求
19樓:匿名使用者
分部積分如下,第二行用了變數代換,令y=ln(x),即x=e^y,
20樓:116貝貝愛
解題過程如下:
原式=lim(x→0) [ln(x)/(1/x)]
=lim(x→0)[(1/x)/(-1/x^2)]
=lim(x→0)[-x]
=0 求函式積分的方法:
如果一個函式f在某個區間上黎曼可積,並且在此區間上大於等於零。那麼它在這個區間上的積分也大於等於零。如果f勒貝格可積並且幾乎總是大於等於零,那麼它的勒貝格積分也大於等於零。
作為推論,如果兩個 上的可積函式f和g相比,f(幾乎)總是小於等於g,那麼f的(勒貝格)積分也小於等於g的(勒貝格)積分。
函式的積分表示了函式在某個區域上的整體性質,改變函式某點的取值不會改變它的積分值。對於黎曼可積的函式,改變有限個點的取值,其積分不變。
對於勒貝格可積的函式,某個測度為0的集合上的函式值改變,不會影響它的積分值。如果兩個函式幾乎處處相同,那麼它們的積分相同。如果對 中任意元素a,可積函式f在a上的積分總等於(大於等於)可積函式g在a上的積分,那麼f幾乎處處等於(大於等於)g。
如果在閉區間[a,b]上,無論怎樣進行取樣分割,只要它的子區間長度最大值足夠小,函式f的黎曼和都會趨向於一個確定的值s,那麼f在閉區間[a,b]上的黎曼積分存在,並且定義為黎曼和的極限s。
21樓:匿名使用者
可以分部積分的~
我知道lz的我難題是lnx*x (0到1) 求不出對吧~首先,從兩種角度分析,
(1)直觀的說,lnx的增長速度趕不上x的,ln(e)=1,可是e≈2.7,明顯越後面,lnx越追不上x,所以到x趨向於0時,lnx到正無窮的速度不夠,因此極限=0
(2)覺得不相信我的話~那麼實際做做看lim(x→0)[ln(x)*x]
這是個無窮乘以0型,先化為無窮比無窮再羅比達法則。
因此原式=lim(x→0) [ln(x)/(1/x)]=lim(x→0)[(1/x)/(-1/x^2)] (羅比達法則了)=lim(x→0)[-x]
=0可見確實為0~這下就能分部積分了吧~
1 lnX的不定積分怎麼求,lnx的不定積分怎麼計算
1 lnx dx 1dx lnxdx x xlnx xdlnx c x xlnx x 1 xdx c x xlnx 1dx c xlnx c lnx的不定積分怎麼計算 利用分步積分法 lnxdx xlnx xd lnx xlnx x 1 xdx xlnx 1dx xlnx x c 在微積分中,一個函...
求高人幫我解答一道不定積分題目1lnx
1 lnx xlnx dx 1 x 1 xlnx dx 1 xdx 1 xlnxdx lnx lnxdlnx lnx lnx 2 2 c 1 lnx xlnx dx的積分 原式 1 lnx lnxd lnx 1 lnx 1 d lnx ln lnx lnx c,其中c是任意常數 高數不定積分題 ln...
lnx 1 x3 2 dxlnx d x1 x分部積分,這一
lnx 1 x zhi 3 2 dx lnx d x 1 x lnx x 1 x 2 1 x x 1 x 2 dx xlnx 1 x 2 dx 1 x 2 xlnx 1 x 2 ln x 1 x 2 c。分部積分法是微積分學dao中的一類重要的 基專本的計算積分的方屬法。它是由微分的乘法法則和微積分...