不定積分dxxx21怎麼求

2021-03-04 04:42:46 字數 6663 閱讀 8785

1樓:匿名使用者

解題關鍵:第二類換元積分法。

滿意請採納!!!

2樓:匿名使用者

^^∫自dx/x√

bai(x^du2-1)=1/2∫zhidx^dao2/x^2√(x^2-1)= 1/2∫dt/t√(t-1) (令x^2=t)

=1/2∫2udu/(u^2+1)u (令√(t-1) =u,t=u^2+1)

=∫du/(u^2+1)

=actanu+c

=actan√(x^2-1)+c

求不定積分dx/x根號下(x^2-1)

3樓:drar_迪麗熱巴

解題過程如下圖:

在微積分中,一個函式f 的不定積分,或原函式,或反導數,是一個導數等於f 的函式 f ,即f ′ = f。

不定積分和定積分間的關係由微積分基本定理確定。其中f是f的不定積分。

根據牛頓-萊布尼茨公式,許多函式的定積分的計算就可以簡便地通過求不定積分來進行。這裡要注意不定積分與定積分之間的關係:定積分是一個數,而不定積分是一個表示式,它們僅僅是數學上有一個計算關係。

一個函式,可以存在不定積分,而不存在定積分,也可以存在定積分,而沒有不定積分。連續函式,一定存在定積分和不定積分;若在有限區間[a,b]上只有有限個間斷點且函式有界,則定積分存在;若有跳躍、可去、無窮間斷點,則原函式一定不存在,即不定積分一定不存在。

性質1、函式的和的不定積分等於各個函式的不定積分的和;即:設函式 及 的原函式存在。

2、求不定積分時,被積函式中的常數因子可以提到積分號外面來。即:設函式 的原函式存在, 非零常數。

4樓:曉龍修理

|^^結果為:-arcsin(1/|x|)+c

解題過程如下:

設t=1/x

則dx=-dt/t^2

∴原式=∫1/[x(x^2-1)^(1/2)]dx

=-∫(dt/t^2)*t|t|/(1-t^2)

=-sgn(t)∫dt/(1-t^2)^(1/2)

=-sgn(x)arcsint+c

=-arcsin(1/|x|)+c

求函式積分的方法:

如果一個函式f在某個區間上黎曼可積,並且在此區間上大於等於零。那麼它在這個區間上的積分也大於等於零。如果f勒貝格可積並且幾乎總是大於等於零,那麼它的勒貝格積分也大於等於零。

作為推論,如果兩個 上的可積函式f和g相比,f(幾乎)總是小於等於g,那麼f的(勒貝格)積分也小於等於g的(勒貝格)積分。

函式的積分表示了函式在某個區域上的整體性質,改變函式某點的取值不會改變它的積分值。對於黎曼可積的函式,改變有限個點的取值,其積分不變。

對於勒貝格可積的函式,某個測度為0的集合上的函式值改變,不會影響它的積分值。如果兩個函式幾乎處處相同,那麼它們的積分相同。如果對 中任意元素a,可積函式f在a上的積分總等於(大於等於)可積函式g在a上的積分,那麼f幾乎處處等於(大於等於)g。

如果在閉區間[a,b]上,無論怎樣進行取樣分割,只要它的子區間長度最大值足夠小,函式f的黎曼和都會趨向於一個確定的值s,那麼f在閉區間[a,b]上的黎曼積分存在,並且定義為黎曼和的極限s。

5樓:不是苦瓜是什麼

令x=sint

原式=∫

cost/(sint+cost) dt

=1/2 ∫(cost-sint)/(sint+cost) dt+1/2 ∫(cost+sint)/(sint+cost) dt

=1/2∫1/(sint+cost) d(sint+cost)+1/2∫dt

=1/2ln|sint+cost|+1/2t+c

t=arcsinx

cost=√1-x^2

所以原式=1/2ln|x+√1-x^2|+1/2arcsinx+c

不定積分的公式

1、∫ a dx = ax + c,a和c都是常數

2、∫ x^a dx = [x^(a + 1)]/(a + 1) + c,其中a為常數且 a ≠ -1

3、∫ 1/x dx = ln|x| + c

4、∫ a^x dx = (1/lna)a^x + c,其中a > 0 且 a ≠ 1

5、∫ e^x dx = e^x + c

6、∫ cosx dx = sinx + c

7、∫ sinx dx = - cosx + c

8、∫ cotx dx = ln|sinx| + c = - ln|cscx| + c

9、∫ tanx dx = - ln|cosx| + c = ln|secx| + c

10、∫ secx dx =ln|cot(x/2)| + c = (1/2)ln|(1 + sinx)/(1 - sinx)| + c = - ln|secx - tanx| + c = ln|secx + tanx| + c

6樓:匿名使用者

都是正確的,原函式的表示不唯一

7樓:匿名使用者

arcsecx = arccos1/x = π/2 - arcsin1/x

所以 arcsecx +c 跟 -arcsin1/x +c 是一致的。。。

8樓:想要共享者

答案應為arccos1/x+c,這與你書上的答案不矛盾,帶入不同,它帶的是csct,但你的x=sect=1/cost,故t=arccos1/x而不是arc1/cosx

9樓:匿名使用者

=ln [x+(x^2+1)^(1/2)] + c

求不定積分∫dx/√(x^2-1)計算過程?

10樓:老黃的分享空間

||記x=sect, 不定積分化為ssecttant/tantdt=ssectdt=ln|sect+tant|+c.

將t=arcsecx代入,做相應的化簡就可以了。最後等於ln|x+根號(x^2-1)|+c

11樓:匿名使用者

x=secu

dx=secu.tanu du

∫dx/√(x^2-1)

=∫ secu du

=ln|secu + tanu| + c

=ln|x + √(x^2-1)| + c

dx/x*✔(x^2-1)的不定積分怎麼求

12樓:陽光

∫dx/x*√(x2-1)=1/2∫dx2/(x2-1)=1/2lnlx2-1l

13樓:匿名使用者

∫ dx/[x^2.√(1-x^2)]

letx= siny

dx =cosy dy

∫ dx/[x^2.√(1-x^2)]

=∫ (cscy)^2dy

=-coty + c

=-√(1-x^2)/x + c

14樓:茹翊神諭者

首先求出定義域

然後分類討論

最後使用換元法

詳情如圖所示,

有任何疑惑,歡迎追問

求不定積分∫x/√(1+x+x^2)dx

15樓:匿名使用者

||x^2+x+1 = (x+1/2)^2+ 3/4

letx+1/2 = (√

3/2)tanu

dx =(√3/2)(secu)^2 du

∫x/√(1+x+x^2)dx

=(1/2)∫(2x+1)/√(1+x+x^2)dx -(1/2)∫dx/√(1+x+x^2)

=√(1+x+x^2) -(1/2)∫dx/√(1+x+x^2)

=√(1+x+x^2) -(1/2)∫ secu du

=√(1+x+x^2) -(1/2)ln|secu + tanu| + c'

=√(1+x+x^2) -(1/2)ln|(2/√3)√(1+x+x^2) + (2x+1)/√3 | + c'

=√(1+x+x^2) -(1/2)ln|2√(1+x+x^2) + (2x+1)| + c

求不定積分∫x/√(1+x-x^2)dx

16樓:等待楓葉

|不定積分∫x/(x^2-x-2 )dx的結果為2/3*ln|x-2|+1/3ln|x+1|+c。

解:因為x/(x^2-x-2)=x/((x-2)*(x+1)),

令x/((x-2)*(x+1))=a/(x-2)+b/(x+1)=(ax+a+bx-2b)/((x-2)*(x+1)),

可得a=2/3,b=1/3。那麼,

∫x/(x^2-x-2)dx

=∫x/((x-2)*(x+1))dx

=∫(2/(3*(x-2))+1/(3*(x+1)))dx

=2/3*∫1/(x-2)dx+1/3∫1/(x+1)dx

=2/3*ln|x-2|+1/3*ln|x+1|+c

擴充套件資料:

1、因式分解的方法

(1)十字相乘法

對於x^2+px+q型多項式,若q可分解因數為q=a*b,且有a+b=p,那麼可應用十字相乘法對多項式x^2+px+q進行因式分解。

x^2+px+q=(x+a)*(x+b)

(2)公式法

平方差公式,a^2-b^2=(a+b)*(a-b)。

完全平方和公式,a^2+2ab+b^2=(a+b)^2。

完全平方差公式,a^2-2ab+b^2=(a-b)^2。

2、不定積分湊微分法

通過湊微分,最後依託於某個積分公式。進而求得原不定積分。

例:∫cos3xdx=1/3∫cos3xd(3x)=1/3sin3x+c

直接利用積分公式求出不定積分。

3、不定積分公式

∫mdx=mx+c、∫1/xdx=ln|x|+c、∫cscxdx=-cotx+c

17樓:寂寞的楓葉

^∫x/(x^2-2ax+1)dx的不定積分為1/2*ln|(x^2-2ax+1|+a/√(1-a^2)*arctan((x-a)/√(1-a^2))+c

解:∫x/(x^2-2ax+1)dx

=1/2*∫(2x-2a+2a)/(x^2-2ax+1)dx

=1/2*∫(2x-2a)/(x^2-2ax+1)dx+∫a/(x^2-2ax+1)dx

=1/2*∫1/(x^2-2ax+1)d(x^2-2ax+1)+∫a/(x^2-2ax+1)dx

=1/2*∫1/(x^2-2ax+1)d(x^2-2ax+1)+a*∫1/((x-a)^2+1-a^2)dx

=1/2*∫1/(x^2-2ax+1)d(x^2-2ax+1)+a/(1-a^2)*∫1/(((x-a)/√(1-a^2))^2+1)dx

=1/2*ln|(x^2-2ax+1|+a/(1-a^2)*∫1/(((x-a)/√(1-a^2))^2+1)dx

令(x-a)/√(1-a^2)=tant,則x=√(1-a^2)*tant+a,那麼

∫1/(((x-a)/√(1-a^2))^2+1)dx

=∫1/(sect)^2d(√(1-a^2)*tant+a)

=√(1-a^2)*∫(sect)^2/(sect)^2dt

=√(1-a^2)*∫1dt

=√(1-a^2)*t+c

又(x-a)/√(1-a^2)=tant,則t=arctan((x-a)/√(1-a^2)),則

∫1/(((x-a)/√(1-a^2))^2+1)dx

=√(1-a^2)*t+c

=√(1-a^2)*arctan((x-a)/√(1-a^2))+c

所以∫x/(x^2-2ax+1)dx

=1/2*ln|(x^2-2ax+1|+a/(1-a^2)*∫1/(((x-a)/√(1-a^2))^2+1)dx

=1/2*ln|(x^2-2ax+1|+a/√(1-a^2)*arctan((x-a)/√(1-a^2))+c

即∫x/(x^2-2ax+1)dx的不定積分為:

1/2*ln|(x^2-2ax+1|+a/√(1-a^2)*arctan((x-a)/√(1-a^2))+c

擴充套件資料:

1、不定積分的公式型別

(1)含ax^2±b的不定積分

∫(1/(a*x^2+b))=1/√(a*b)*arctan(√a*x/√b)+c

(2)含a+bx的不定積分

∫(1/(ax+b))=1/b*ln|ax+b|+c、∫(x/(ax+b))=1/b^2*(a+bx-aln|ax+b|)+c

(3)含x^2±a^2的不定積分

∫(1/(x^2+a^2))=1/a*arctan(x/a)+c、∫(1/(x^2-a^2))=1/(2a)*ln|(x-a)/(x+a)|+c

2、不定積分的求解方法

(1)換元積分法

例:∫e^(2x)dx=1/2∫e^(2x)d(2x)=1/2*e^(2x)+c

(2)積分公式法

例:∫e^xdx=e^x、∫1/xdx=ln|x|+c、∫cosxdx=sinx+c

(3)分部積分法

例:∫x*e^xdx=∫xd(e^x)=x*e^x-∫e^xdx=x*e^x-e^x=(x-1)*e^x

3、常用的積分公式

∫(secx)^2dx=tanx+c、∫1/(x^2+x+1)d(x^2+x+1)=ln|x^2+x+1|+c、積分5dx=5x+c

這個不定積分怎麼求,不定積分,請問這個怎麼求

利用分步積分法 lnxdx xlnx xd lnx xlnx x 1 xdx xlnx 1dx xlnx x c 在微積分中,一個函式f 的不定積分,或原函式,或反導數,是一個導數等於f 的函式 f 即f f。不定積分和定積分間的關係由微積分基本定理確定。其中f是f的不定積分。這樣,許多函式的定積分...

這個不定積分怎麼求有根號,請問不定積分中帶根號的一些題該如何求?有什麼方法嗎?

顯然c只能為正數,令y csecu,csinud csecu c tan udu c tanu u c 請問不定積分中帶根號的一些題該如何求?有什麼方法嗎?不定積分中帶來根號的問題同其他積分源一樣bai,都可採用以下du方法 1 積分公式法zhi,直接利用積dao分公式求出不定積分。2 第一類換元法...

1 lnX的不定積分怎麼求,lnx的不定積分怎麼計算

1 lnx dx 1dx lnxdx x xlnx xdlnx c x xlnx x 1 xdx c x xlnx 1dx c xlnx c lnx的不定積分怎麼計算 利用分步積分法 lnxdx xlnx xd lnx xlnx x 1 xdx xlnx 1dx xlnx x c 在微積分中,一個函...