1樓:匿名使用者
解題關鍵:第二類換元積分法。
滿意請採納!!!
2樓:匿名使用者
^^∫自dx/x√
bai(x^du2-1)=1/2∫zhidx^dao2/x^2√(x^2-1)= 1/2∫dt/t√(t-1) (令x^2=t)
=1/2∫2udu/(u^2+1)u (令√(t-1) =u,t=u^2+1)
=∫du/(u^2+1)
=actanu+c
=actan√(x^2-1)+c
求不定積分dx/x根號下(x^2-1)
3樓:drar_迪麗熱巴
解題過程如下圖:
在微積分中,一個函式f 的不定積分,或原函式,或反導數,是一個導數等於f 的函式 f ,即f ′ = f。
不定積分和定積分間的關係由微積分基本定理確定。其中f是f的不定積分。
根據牛頓-萊布尼茨公式,許多函式的定積分的計算就可以簡便地通過求不定積分來進行。這裡要注意不定積分與定積分之間的關係:定積分是一個數,而不定積分是一個表示式,它們僅僅是數學上有一個計算關係。
一個函式,可以存在不定積分,而不存在定積分,也可以存在定積分,而沒有不定積分。連續函式,一定存在定積分和不定積分;若在有限區間[a,b]上只有有限個間斷點且函式有界,則定積分存在;若有跳躍、可去、無窮間斷點,則原函式一定不存在,即不定積分一定不存在。
性質1、函式的和的不定積分等於各個函式的不定積分的和;即:設函式 及 的原函式存在。
2、求不定積分時,被積函式中的常數因子可以提到積分號外面來。即:設函式 的原函式存在, 非零常數。
4樓:曉龍修理
|^^結果為:-arcsin(1/|x|)+c
解題過程如下:
設t=1/x
則dx=-dt/t^2
∴原式=∫1/[x(x^2-1)^(1/2)]dx
=-∫(dt/t^2)*t|t|/(1-t^2)
=-sgn(t)∫dt/(1-t^2)^(1/2)
=-sgn(x)arcsint+c
=-arcsin(1/|x|)+c
求函式積分的方法:
如果一個函式f在某個區間上黎曼可積,並且在此區間上大於等於零。那麼它在這個區間上的積分也大於等於零。如果f勒貝格可積並且幾乎總是大於等於零,那麼它的勒貝格積分也大於等於零。
作為推論,如果兩個 上的可積函式f和g相比,f(幾乎)總是小於等於g,那麼f的(勒貝格)積分也小於等於g的(勒貝格)積分。
函式的積分表示了函式在某個區域上的整體性質,改變函式某點的取值不會改變它的積分值。對於黎曼可積的函式,改變有限個點的取值,其積分不變。
對於勒貝格可積的函式,某個測度為0的集合上的函式值改變,不會影響它的積分值。如果兩個函式幾乎處處相同,那麼它們的積分相同。如果對 中任意元素a,可積函式f在a上的積分總等於(大於等於)可積函式g在a上的積分,那麼f幾乎處處等於(大於等於)g。
如果在閉區間[a,b]上,無論怎樣進行取樣分割,只要它的子區間長度最大值足夠小,函式f的黎曼和都會趨向於一個確定的值s,那麼f在閉區間[a,b]上的黎曼積分存在,並且定義為黎曼和的極限s。
5樓:不是苦瓜是什麼
令x=sint
原式=∫
cost/(sint+cost) dt
=1/2 ∫(cost-sint)/(sint+cost) dt+1/2 ∫(cost+sint)/(sint+cost) dt
=1/2∫1/(sint+cost) d(sint+cost)+1/2∫dt
=1/2ln|sint+cost|+1/2t+c
t=arcsinx
cost=√1-x^2
所以原式=1/2ln|x+√1-x^2|+1/2arcsinx+c
不定積分的公式
1、∫ a dx = ax + c,a和c都是常數
2、∫ x^a dx = [x^(a + 1)]/(a + 1) + c,其中a為常數且 a ≠ -1
3、∫ 1/x dx = ln|x| + c
4、∫ a^x dx = (1/lna)a^x + c,其中a > 0 且 a ≠ 1
5、∫ e^x dx = e^x + c
6、∫ cosx dx = sinx + c
7、∫ sinx dx = - cosx + c
8、∫ cotx dx = ln|sinx| + c = - ln|cscx| + c
9、∫ tanx dx = - ln|cosx| + c = ln|secx| + c
10、∫ secx dx =ln|cot(x/2)| + c = (1/2)ln|(1 + sinx)/(1 - sinx)| + c = - ln|secx - tanx| + c = ln|secx + tanx| + c
6樓:匿名使用者
都是正確的,原函式的表示不唯一
7樓:匿名使用者
arcsecx = arccos1/x = π/2 - arcsin1/x
所以 arcsecx +c 跟 -arcsin1/x +c 是一致的。。。
8樓:想要共享者
答案應為arccos1/x+c,這與你書上的答案不矛盾,帶入不同,它帶的是csct,但你的x=sect=1/cost,故t=arccos1/x而不是arc1/cosx
9樓:匿名使用者
=ln [x+(x^2+1)^(1/2)] + c
求不定積分∫dx/√(x^2-1)計算過程?
10樓:老黃的分享空間
||記x=sect, 不定積分化為ssecttant/tantdt=ssectdt=ln|sect+tant|+c.
將t=arcsecx代入,做相應的化簡就可以了。最後等於ln|x+根號(x^2-1)|+c
11樓:匿名使用者
x=secu
dx=secu.tanu du
∫dx/√(x^2-1)
=∫ secu du
=ln|secu + tanu| + c
=ln|x + √(x^2-1)| + c
dx/x*✔(x^2-1)的不定積分怎麼求
12樓:陽光
∫dx/x*√(x2-1)=1/2∫dx2/(x2-1)=1/2lnlx2-1l
13樓:匿名使用者
∫ dx/[x^2.√(1-x^2)]
letx= siny
dx =cosy dy
∫ dx/[x^2.√(1-x^2)]
=∫ (cscy)^2dy
=-coty + c
=-√(1-x^2)/x + c
14樓:茹翊神諭者
首先求出定義域
然後分類討論
最後使用換元法
詳情如圖所示,
有任何疑惑,歡迎追問
求不定積分∫x/√(1+x+x^2)dx
15樓:匿名使用者
||x^2+x+1 = (x+1/2)^2+ 3/4
letx+1/2 = (√
3/2)tanu
dx =(√3/2)(secu)^2 du
∫x/√(1+x+x^2)dx
=(1/2)∫(2x+1)/√(1+x+x^2)dx -(1/2)∫dx/√(1+x+x^2)
=√(1+x+x^2) -(1/2)∫dx/√(1+x+x^2)
=√(1+x+x^2) -(1/2)∫ secu du
=√(1+x+x^2) -(1/2)ln|secu + tanu| + c'
=√(1+x+x^2) -(1/2)ln|(2/√3)√(1+x+x^2) + (2x+1)/√3 | + c'
=√(1+x+x^2) -(1/2)ln|2√(1+x+x^2) + (2x+1)| + c
求不定積分∫x/√(1+x-x^2)dx
16樓:等待楓葉
|不定積分∫x/(x^2-x-2 )dx的結果為2/3*ln|x-2|+1/3ln|x+1|+c。
解:因為x/(x^2-x-2)=x/((x-2)*(x+1)),
令x/((x-2)*(x+1))=a/(x-2)+b/(x+1)=(ax+a+bx-2b)/((x-2)*(x+1)),
可得a=2/3,b=1/3。那麼,
∫x/(x^2-x-2)dx
=∫x/((x-2)*(x+1))dx
=∫(2/(3*(x-2))+1/(3*(x+1)))dx
=2/3*∫1/(x-2)dx+1/3∫1/(x+1)dx
=2/3*ln|x-2|+1/3*ln|x+1|+c
擴充套件資料:
1、因式分解的方法
(1)十字相乘法
對於x^2+px+q型多項式,若q可分解因數為q=a*b,且有a+b=p,那麼可應用十字相乘法對多項式x^2+px+q進行因式分解。
x^2+px+q=(x+a)*(x+b)
(2)公式法
平方差公式,a^2-b^2=(a+b)*(a-b)。
完全平方和公式,a^2+2ab+b^2=(a+b)^2。
完全平方差公式,a^2-2ab+b^2=(a-b)^2。
2、不定積分湊微分法
通過湊微分,最後依託於某個積分公式。進而求得原不定積分。
例:∫cos3xdx=1/3∫cos3xd(3x)=1/3sin3x+c
直接利用積分公式求出不定積分。
3、不定積分公式
∫mdx=mx+c、∫1/xdx=ln|x|+c、∫cscxdx=-cotx+c
17樓:寂寞的楓葉
^∫x/(x^2-2ax+1)dx的不定積分為1/2*ln|(x^2-2ax+1|+a/√(1-a^2)*arctan((x-a)/√(1-a^2))+c
解:∫x/(x^2-2ax+1)dx
=1/2*∫(2x-2a+2a)/(x^2-2ax+1)dx
=1/2*∫(2x-2a)/(x^2-2ax+1)dx+∫a/(x^2-2ax+1)dx
=1/2*∫1/(x^2-2ax+1)d(x^2-2ax+1)+∫a/(x^2-2ax+1)dx
=1/2*∫1/(x^2-2ax+1)d(x^2-2ax+1)+a*∫1/((x-a)^2+1-a^2)dx
=1/2*∫1/(x^2-2ax+1)d(x^2-2ax+1)+a/(1-a^2)*∫1/(((x-a)/√(1-a^2))^2+1)dx
=1/2*ln|(x^2-2ax+1|+a/(1-a^2)*∫1/(((x-a)/√(1-a^2))^2+1)dx
令(x-a)/√(1-a^2)=tant,則x=√(1-a^2)*tant+a,那麼
∫1/(((x-a)/√(1-a^2))^2+1)dx
=∫1/(sect)^2d(√(1-a^2)*tant+a)
=√(1-a^2)*∫(sect)^2/(sect)^2dt
=√(1-a^2)*∫1dt
=√(1-a^2)*t+c
又(x-a)/√(1-a^2)=tant,則t=arctan((x-a)/√(1-a^2)),則
∫1/(((x-a)/√(1-a^2))^2+1)dx
=√(1-a^2)*t+c
=√(1-a^2)*arctan((x-a)/√(1-a^2))+c
所以∫x/(x^2-2ax+1)dx
=1/2*ln|(x^2-2ax+1|+a/(1-a^2)*∫1/(((x-a)/√(1-a^2))^2+1)dx
=1/2*ln|(x^2-2ax+1|+a/√(1-a^2)*arctan((x-a)/√(1-a^2))+c
即∫x/(x^2-2ax+1)dx的不定積分為:
1/2*ln|(x^2-2ax+1|+a/√(1-a^2)*arctan((x-a)/√(1-a^2))+c
擴充套件資料:
1、不定積分的公式型別
(1)含ax^2±b的不定積分
∫(1/(a*x^2+b))=1/√(a*b)*arctan(√a*x/√b)+c
(2)含a+bx的不定積分
∫(1/(ax+b))=1/b*ln|ax+b|+c、∫(x/(ax+b))=1/b^2*(a+bx-aln|ax+b|)+c
(3)含x^2±a^2的不定積分
∫(1/(x^2+a^2))=1/a*arctan(x/a)+c、∫(1/(x^2-a^2))=1/(2a)*ln|(x-a)/(x+a)|+c
2、不定積分的求解方法
(1)換元積分法
例:∫e^(2x)dx=1/2∫e^(2x)d(2x)=1/2*e^(2x)+c
(2)積分公式法
例:∫e^xdx=e^x、∫1/xdx=ln|x|+c、∫cosxdx=sinx+c
(3)分部積分法
例:∫x*e^xdx=∫xd(e^x)=x*e^x-∫e^xdx=x*e^x-e^x=(x-1)*e^x
3、常用的積分公式
∫(secx)^2dx=tanx+c、∫1/(x^2+x+1)d(x^2+x+1)=ln|x^2+x+1|+c、積分5dx=5x+c
這個不定積分怎麼求,不定積分,請問這個怎麼求
利用分步積分法 lnxdx xlnx xd lnx xlnx x 1 xdx xlnx 1dx xlnx x c 在微積分中,一個函式f 的不定積分,或原函式,或反導數,是一個導數等於f 的函式 f 即f f。不定積分和定積分間的關係由微積分基本定理確定。其中f是f的不定積分。這樣,許多函式的定積分...
這個不定積分怎麼求有根號,請問不定積分中帶根號的一些題該如何求?有什麼方法嗎?
顯然c只能為正數,令y csecu,csinud csecu c tan udu c tanu u c 請問不定積分中帶根號的一些題該如何求?有什麼方法嗎?不定積分中帶來根號的問題同其他積分源一樣bai,都可採用以下du方法 1 積分公式法zhi,直接利用積dao分公式求出不定積分。2 第一類換元法...
1 lnX的不定積分怎麼求,lnx的不定積分怎麼計算
1 lnx dx 1dx lnxdx x xlnx xdlnx c x xlnx x 1 xdx c x xlnx 1dx c xlnx c lnx的不定積分怎麼計算 利用分步積分法 lnxdx xlnx xd lnx xlnx x 1 xdx xlnx 1dx xlnx x c 在微積分中,一個函...