1樓:匿名使用者
樓上不全正確
(1)連續性,
x趨於0左時,limsinx=0,x趨於0右時,limx=0,極限等於函式值,所以連續。
(專2)可導性,左
屬邊趨近0時,f』(x)=cosx=1,右邊趨近0時,f』(x)=1,所以可導 。(這麼判斷的前提是函式在這點連續。否則判斷可導要用定義)
2樓:在水哪方
連續性,x<0時f(x)=0,x≥0,f(x)=0,所以連續
可導性,左邊趨近時f』(x)=cosx,右邊趨近時f』(x)=1≠左邊趨近時,所以,不可導
討論f(x)=sinx在x=0處的連續性和可導性
3樓:匿名使用者
解:x→0+
x→0-
limsinx=lim-sinx=0=sin0
左右都連續.所以連續
x→0+
lim(|sinx|-|sin0)|/(x-0)=limsinx/x=1
x→0-
lim(|sinx|-|sin0)|/(x-0)=lim-sinx/x=-1
左右導數不等,所以不可導。
連續性:y在x的領域內處有定義,而且y在x趨向於0時極限存在,而且極限值等於y在x=0的值。證明極限存在,要看左右極限是否存在且相等,像這函式,左右極限都存在,且都等於0,而且極限值等於函式值。
可導性:先對函式進行求導,再求其在x=0處左右極限是否存在且相等,如果不存在,則不可導,如果存在可是不相等,也不可導。
擴充套件資料
函式的連續性:
在定義函式的連續性之前先了解一個概念——增量設變數x從它的一個初值x1變到終值x2,終值與初值的差x2-x1就叫做變數x的增量,記為:△x即:△x=x2-x1增量△x可正可負。
設函式在區間[a,b)內有定義,如果右極限存在且等於,即:=,那麼就稱函式在點a右連續。一個函式在開區間(a,b)內每點連續。
則為在(a,b)連續,若又在a點右連續,b點左連續,則在閉區間[a,b]連續,如果在整個定義域內連續,則稱為連續函式。
注:一個函式若在定義域內某一點左、右都連續,則稱函式在此點連續,否則在此點不連續。注:連續函式圖形是一條連續而不間斷的曲線。
4樓:匿名使用者
正弦函式在實數上連續且可導
5樓:匿名使用者
|lim(x->0)f(x) =lim(x->0)|x| =0 =f(0) 所以 連續版
; f'+(0)=lim(x->0+)|x|/x=lim(x->0+)x/x=1 f'-(0)=lim(x->0-)|x|/x=lim(x->0-)-x/x=-1 f'+(0)≠f'-(0) 所以 不可導權。
討論函式f(x)=(如圖),在x=0處的連續性與可導性
6樓:戴悅章佳吉敏
我就和你說一下思路
,分數很難打,請諒解
首先連續
性就是求f(x)趨近與0時候的極限是否等於1用洛必達法則
可導性就是求導數是否連續
若連續則x=0時代入第一個式子的到函式是否等於0若等於0則說明可導
自學大學高數
不容易啊
祝馬到成功
乘風破浪
望採納~~謝謝~~(*^__^*)嘻嘻
7樓:嗚哇無涯
1.函1.函式的連續性:指的是函式的左極限等於函式的右極限等於0處的函式值。
2.函式可導的話指的是函式的左導數等於函式的右倒數,由於是分段函式所以,必要的情況下要使用定義法。
討論函式f(x)=x^2sin1/x (x≠0) 0 (x=0)在點x=0處的連續性與可導性
8樓:demon陌
利用定義來求
f '(0) = lim(x->0) [ f(x) - f(0) ] / (x-0)
= lim(x->0) x2 sin(1/x) / x= lim(x->0) x sin(1/x) 無窮小與有界函式的乘積還是無窮小
= 0一個與它量有關聯的變數,這一量中的任何一值都能在它量中找到對應的固定值。隨著自變數的變化而變化,且自變數取唯一值時,因變數(函式)有且只有唯一值與其相對應。
9樓:匿名使用者
f '(0) = lim(x->0) [ f(x) - f(0) ] / (x-0)
= lim(x->0) x2 sin(1/x) / x
= lim(x->0) x sin(1/x) 無窮小與有界函式的乘積還是無窮小
= 0當x->0時f(x)->f(0),說明函式在0點連續,這是導數存在的必要條件.
接下來用導數的定義求0點的左、右導數:
f'(0+)=lim(x->0+) [f(x)-f(0)]/(x-0)
=lim[x^2*sin(1/x)]/x
=lim[x*sin(1/x)]
是無窮小×有界的形式
所以f'(0+)=0
f'(0-)=lim(x->0-) [f(x)-f(0)]/(x-0)
=lim[x^2*sin(1/x)]/x
=lim[x*sin(1/x)]
還是無窮小×有界的形式
所以f'(0-)=0
綜上:由於f'(0+)=f'(0-)=0
所以f'(0)=0
10樓:西域牛仔王
已知 f(0)=0,所以
f '(0)=lim(x→0)[f(x)-f(0)]/(x-0)=lim(x→0)[x*sin(1/x)],
由正弦函式的有界性,上式極限為0,即 f '(0)=0 。
討論函式y=f(x)=x^2sin(1/x),x不等於0 ,5,x=0 在x=0處的連續性 10
11樓:善言而不辯
f(x)=x2·sin(1/x) x≠0
f(x)=5 x=0
-1≤sin(1/x)≤1為一有限量,x→0時,x2→0∴lim(x→0)f(x)=0
左極限=右極限≠函式值
∴函式在x=0處不連續
12樓:樂卓手機
因有:x趨向0時有f(x)也趨向於0=f(0), 按定義,它在x=0處連續.
因有:x趨向0時,:[f(x)- f(0)]/x = f(x)/x = xsin(1/x)有極限0, 故它在x=0處可導,且導數為0.
討論y={sinx(x≥0),x-1(x<0)在x=0處的連續性和可導性
13樓:匿名使用者
x趨於0的時候,
sinx趨於0,而x-1趨於 -1
所以y的左右極限值不相等,
那麼x=0處,
y是不連續的,
故y也不可導
討論f(x)={|sinx/x|x≠0;0 x=0;(這兩個是並列寫的)在x=0處的連續性。
14樓:我不是他舅
lim(x→0)f(x)
=lim(x→0)sinx/x
=1≠f(0)
所以函式在x=0處不連續
15樓:張三李四來了嗎
a/sina=b/sinb=c/sinc=k則sina=a/k
其他同來理,代入
源式子中,約去k
有c2-a2-b2+ab=0
a2+b2-c2=ab所以
已知函式fxx1x0log2xx0,則
由前面的函式可求的 x 1時 y f x 1 1 x 1 1 1 x 3此時令y 0可得,x 3 1 所以此時y有一個零點x 3 11時 y f log2x 1 log 2log 2x 1此時令y 0可得,x 10 1 20 2 0.561 1,顯然在此範圍內,y無零點 綜上,y共有三個零點。當x ...
為什麼xx0可以用0xx表示
0 x x0 並不是表示x x0,只是表示x與x0的距離,可以很遠,也可以很近版 我們的計算目權的是證明 f x a 如果x與x0在很大範圍內就已經可以使 f x a 在一般情況下,是e的一個函式,由e的大小來確定 的大小,如果是任給 無法保證e足夠小 舉個簡單例子,f x 0,對於x0 0這個點,...
設函式fx在點x x0處連續,則f x 在點x x0處是否連續
不一定。例如r上週期t 2的函式f x 當 1 x 1時f x x,作圖可知 f x 連續,而f x 在所有奇數點不連續 如果函式f x 在點x0處可導,則它在點x0處必定連續.該說法是否正確 這是正確的。如果它在點x0處連續,則函式f x 在點x0處必定可導。錯誤,比如f x x的絕對值,在xo ...