1樓:angela韓雪倩
f(y)=p(yx=(+or-y^0.5),|jacobian|=|dx/dy|=1/2y^-0.5 f(y)=(0.
5y^-0.5) (fx(y^0.5)+fx(-y^0.
5))= (0.5y^-0.5)(e^(y^0.
5)+e^(-y^0.5))
任意的隨機變數x,y=x^2的分佈都是(0.5y^-0.5)(fx(y^0.5)+fx(-y^0.5))下次直接套這個公式就好,上面的證明對於一切隨機變數x都適用。
2樓:
y =e^x,所以x=lny,|dx/dy|=1/y,x>0,所以ln y>0,y>1,
所以f(y)=e^-(ln y) *1/y, y>1
3樓:量子時間
f(y)=p(y,=y)=p(e^x<=y)=p(x<=lny)=fx(lny)=1-e^(-lny)=1-1/y
f(y)=df(y)/dy=1/y^2(1 4樓:灆沺 f(x)=∫(下限0,上限+∞)f(x)dx,x>0 0,其他這鞋的好糾結,能看懂嗎?會積分嗎?不會再說下。 設隨機變數x的概率密度為 f(x)= e^-x,x〉0 0,x≤0 求⑴y=2x, ⑵y=e^-2x 的數學期望 5樓:demon陌 ^(1)、ey=2e(x)=2 (2)、e(y)=∫(-∞,+∞)f(x)e^(-2x)dx=1/3期望值並不一定等同於常識中的「期望」——「期望值」也許與每一個結果都不相等。期望值是該變數輸出值的平均數。期望值並不一定包含於變數的輸出值集合裡。 如果隨機變數只取得有限個值或無窮能按一定次序一一列出,其值域為一個或若干個有限或無限區間,這樣的隨機變數稱為離散型隨機變數。 6樓:匿名使用者 先求分佈函式,再求密度函式,最後求期望。 一個題為例 f(y)=p(y≤y)=p(2x≤y)=p(x≤y/2)= ∫[o,y/2]e^(-x)dx=1-e^(-y/2) y>0 =0 y≤0f(y)=f'(y)=(1/2)e^(-y/2) y>0=0 y≤0ey=∫yf(y)dy=2 7樓:匿名使用者 y=2x.y=e^-2x 8樓: 解:(1).ey=2e(x)=2 (2)e(y)=∫(-∞,+∞)f(x)e^(-2x)dx=1/3 如有意見,歡迎討論,共同學習;如有幫助,請選為滿意回答! 對概率密度函式積分來就可自以得到分佈函式,當x2 e x dx 1 2 e x 代入上限 x,下限 1 2 e x 當x 0時,f x 1 2 e x 故分佈函式 f x f 0 上限x,下限0 1 2 e x dx f 0 1 2 e x 代入上限x,下限0 f 0 1 2 e x 1 2 而f ... 示例 先求分du 布函式由概zhi率密度積分 得dao f 內x 然後 由概率公式容 f 1 f 0 1 f 1 2 f 0 5 8 解得a 1 b 3 2 對概率密度積分,結果為 f x dx ax bx 3 3 在零到一區間內,得到a b 3 1 平均值 f x xdx ax 2 2 bx 4 ... 具體回答如圖 事件隨機發生的機率,對於均勻分佈函式,概率密度等於一段區間 事件的取值範內圍 的概容率除以該段區間的長度,它的值是非負的,可以很大也可以很小。你好!可以期望的公式並分成兩段如圖求出期望為1。經濟數學團隊幫你解答,請及時採納。謝謝!e x xf x dx,分別在 0,1 和 1,2 上求...設連續型隨機變數X的概率密度函式為
設隨機變數x的概率密度fxaxb0小於等於x大於等
設隨機變數X的概率密度為f xx,0 x 1 2 x,1 x 2 0,其他求E x