利用球面座標計算下列三重積分x 2 y 2 z 2 dv,其中為球體x2 y2 z

2021-04-30 07:43:48 字數 2673 閱讀 6591

1樓:匿名使用者

答:32πa⁵/15

方法一:標準球座標

x²+y²+(z-a)² = a²

x²+y²+z² = 2az

x = r sinφ cosθ

y = r sinφ sinθ

z = r cosφ

dv = r²sinφ drdφdθ

ω方程變為:r = 2acosφ

由於整個球面在xoy面上,所以0 ≤ φ ≤ π/2

∫_(ω) (x²+y²+z²) dv

= ∫(0,2π) dθ ∫(0,π/2) sinφ dφ ∫(0,2acosφ) r² * r² dr

= (2π)∫(0,π/2) sinφ * (1/5)(32a⁵cos⁵φ) dφ

= (2π)(1/5)(32a⁵)(- 1)∫(0,π/2) cos⁵φ d(cosφ)

= (2π)(1/5)(32a⁵)(- 1)(1/6)[ cos⁶φ ]|(0,π/2)

= (2π)(1/5)(32a⁵)(- 1)(1/6)(0 - 1)

= 32πa⁵/15

方法二:廣義球座標

x = r sinφ cosθ

y = r sinφ sinθ

z = a + r cosφ

dv = r²sinφ drdφdθ

ω方程變為:r = a

∫_(ω) (x²+y²+z²) dv

= ∫(0,2π) dθ ∫(0,π) sinφ dφ ∫(0,a) (r²sin²φ+(a+rcosφ)²) * r² dr

= ∫(0,2π) dθ ∫(0,π) sinφ dφ ∫(0,a) (r² + (2arcosφ + r²cos²φ)) * r² dr

後面2arcosφ* r²部分的積分應該等於0

剩下r² * r²就好算了

方法三:平移,其實跟廣義極座標一樣原理

x = u

y = v

z = a + w

dv = du***w

ω方程變為:u²+v²+w² = a²

∫_(ω) (x²+y²+z²) dv

= ∫_(ω') (u²+v²+(a+w)²) du***w

= ∫_(ω') (u²+v²+w²+a²) du***w + ∫_(ω') 2aw du***w

後面那個利用對稱性得結果為0,前面的可直接用球座標

= ∫(0,2π) dθ ∫(0,π) sinφ dφ ∫(0,a) (r²+a²) * r² dr

= (2π)(2)(8a⁵/15)

= 32πa⁵/15

如何利用球面座標計算下列三重積分?

2樓:匿名使用者

答:32πa⁵/15

方法一:標準球座標

x²+y²+(z-a)² = a²

x²+y²+z² = 2az

x = r sinφ

62616964757a686964616fe4b893e5b19e31333365633836 cosθ

y = r sinφ sinθ

z = r cosφ

dv = r²sinφ drdφdθ

ω方程變為:r = 2acosφ

由於整個球面在xoy面上,所以0 ≤ φ ≤ π/2

∫_(ω) (x²+y²+z²) dv

= ∫(0,2π) dθ ∫(0,π/2) sinφ dφ ∫(0,2acosφ) r² * r² dr

= (2π)∫(0,π/2) sinφ * (1/5)(32a⁵cos⁵φ) dφ

= (2π)(1/5)(32a⁵)(- 1)∫(0,π/2) cos⁵φ d(cosφ)

= (2π)(1/5)(32a⁵)(- 1)(1/6)[ cos⁶φ ]|(0,π/2)

= (2π)(1/5)(32a⁵)(- 1)(1/6)(0 - 1)

= 32πa⁵/15

方法二:廣義球座標

x = r sinφ cosθ

y = r sinφ sinθ

z = a + r cosφ

dv = r²sinφ drdφdθ

ω方程變為:r = a

∫_(ω) (x²+y²+z²) dv

= ∫(0,2π) dθ ∫(0,π) sinφ dφ ∫(0,a) (r²sin²φ+(a+rcosφ)²) * r² dr

= ∫(0,2π) dθ ∫(0,π) sinφ dφ ∫(0,a) (r² + (2arcosφ + r²cos²φ)) * r² dr

後面2arcosφ* r²部分的積分應該等於0

剩下r² * r²就好算了

方法三:平移,其實跟廣義極座標一樣原理

x = u

y = v

z = a + w

dv = du***w

ω方程變為:u²+v²+w² = a²

∫_(ω) (x²+y²+z²) dv

= ∫_(ω') (u²+v²+(a+w)²) du***w

= ∫_(ω') (u²+v²+w²+a²) du***w + ∫_(ω') 2aw du***w

後面那個利用對稱性得結果為0,前面的可直接用球座標

= ∫(0,2π) dθ ∫(0,π) sinφ dφ ∫(0,a) (r²+a²) * r² dr

= (2π)(2)(8a⁵/15)

= 32πa⁵/15

利用定積分的幾何意義,計算下列定積分

定積分是積分的一種,是函式f x 在區間 a,b 上的積分和的極限。注意定積分與不定積分之間的關係 若定積分存在,則它是一個具體的數值 曲邊梯形的面積 而不定積分是一個函式表示式,它們僅僅在數學上有一個計算關係 牛頓 萊布尼茨公式 擴充套件資料 定積分定義 設函式f x 在區間 a,b 上連續,將區...

三重積分,為什麼用先二後一和柱面座標計算的結果不一樣啊?求教

中來先二後一的做法當自 中,分母上的根號裡的xx yy寫成3z是錯的。中稱為柱面座標的做法,事實上是先二後一的做法。此做法得到了本題的正確結果28 3。本題如果用柱面座標計算,應該分成兩塊。我們粗略地說積分割槽域形如一個碗,則自碗底向上的圓柱體是其中的一塊,此圓柱體外 並碗內之殼是另一塊。高等數學中...

用極座標法計算二重積分x 2 y 2dxdy D x 2,y x,xy 1所圍成區域

積分割槽域 arctan 1 4 4 2 sin2 r 2 cos x 2 y 2dxdy arctan 1 4 4 d 2 sin2 2 cos cos sin 2rdr 1 2 arctan 1 4 4 cos sin 2 2 sin2 2 4 cos 2 d 1 2 arctan 1 4 4 ...