如何解這個不定積分,不定積分如何解?

2021-09-14 15:09:19 字數 3618 閱讀 9168

1樓:匿名使用者

求不定積分:∫dx

解:原式=∫[e^(1/x)/x^5]dx-∫dx/x^5=-1/(4x⁴)+∫[e^(1/x)/x^5]dx

令1/x=u,則x=1/u,dx=-du/u²,代入時式中的第二個積分:

∫[e^(1/x)/x^5]dx=-∫[(u^5)(e^u)/u²]du=-∫u³e^udu=-∫u³d(e^u)=-[u³e^u-3∫u²e^udu]

=-u³e^u+3∫u²d(e^u)=-u³e^u+3[u²e^u-2∫ue^udu]=-u³e^u+3u²e^u-6∫ud(e^u)

=-u³e^u+3u²e^u-6[ue^u-∫e^udu]=-u³e^u+3u²e^u-6ue^u+6e^u=(-u³+3u²-6u+6)e^u+c

=(-1/x³+3/x²-6/x+6)e^(1/x)+c

故∫dx=-1/(4x⁴)+(-1/x³+3/x²-6/x+6)e^(1/x)+c

2樓:

按照下面的解題方法去做。

∫e^2x/√(2e^x+1)dx

=∫e^x/√(2e^x+1)*e^xdx

=∫e^x/√(2e^x+1)de^x

=1/2*∫e^x/√(2e^x+1)d2e^x

=1/2*∫e^x/√(2e^x+1)d(2e^x+1)

=1/2*(-1/2+1)∫e^xd√(2e^x+1)

=1/4[√(2e^x+1)*e^x-∫√(2e^x+1)*de^x]

=1/4[√(2e^x+1)*e^x-1/2*∫√(2e^x+1)*d(2e^x+1)]

=1/4[√(2e^x+1)*e^x-1/2*(1/2+1)(2e^x+1)^(1/2+1)]+c

=√(2e^x+1)*e^x/4-3(2e^x+1)^(3/2)/16+c

不定積分如何解? 10

3樓:匿名使用者

主要的積分法是利用基本積分公式,換元積分法和分部積分法。對於第一換元專積分法,要求屬熟練掌握湊微分法和設中間變數,而第二換元積分法重點要求掌握三角函式代換,分部積分法是通過「部分地」湊微分將轉化成,這種轉化應是朝有利於求積分的方向轉化。對於不同的被積函式型別應該有針對性地、靈活地採用有效的積分方法,例如為有理函式時,通過多項式除法分解成最簡分式來積分,為無理函式時,常可用換元積分法。

應該指出的是:積分運算比起微分運算來,不僅技巧性更強,而且業已證明,有許多初等函式是「積不出來」的,就是說這些函式的原函式不能用初等函式來表示,

不定積分怎麼解?

4樓:使用者名稱用

1 換元積分法bai

換元積分法分為du

第一換元zhi法(湊微分法)、dao第二換元法兩種基本方法。而版在權解題過程中我們更加關注的是如何換元,一種好的換元方法會讓題目的解答變得簡便。

2.當根號內出現單項式或多項式時一般用代去根號。

3.當被積函式只有形式簡單的三角函式時考慮使用萬能代換法。

5樓:七裡落櫻

你這就好比籠統地問「怎麼賺錢」,沒法回答你。總的來說就是換元,分部積分,三角代換,你只能通過做題去了解

6樓:浮涆銳文德

解:分享抄

一種較簡潔襲的解法。被積函式中含有(sinx)^3,直接用sin3x=-4(sinx)^3+3sinx,將被積函式變成x[3sinx-sin3x)/4。∴原式=∫x[3sinx-sin3x)/4dx=(3/4)∫xd(-cosx)+(1/12)∫xd(cos3x)=(x/12)(cos3x-9cosx)+(3/4)sinx+(1/36)sin3x+c。

供參考。

如何求不定積分?

7樓:匿名使用者

分子分母同時乘以一個(根號下x+1)-(根號下x-1)。這樣分母化為有理,剩下的一目瞭然,就不往上寫了。

8樓:孤狼嘯月

一般我們在做不定積分的題目時,需要對一些常見的函式的原函式、導函式熟練掌握,這樣才能在解題時事半功倍。

9樓:匿名使用者

∫1/[(1+x)^(1/2)+(x-1) ^(1/2)] dx (注:求積分部分分子有理化)

=1/2* ∫[(1+x)^(1/2)-(x-1) ^(1/2)]dx

=1/2*[ ∫(1+x)^(1/2)dx - ∫(x-1) ^(1/2)]dx]

= 1/2*[ ∫(1+x)^(1/2)d(x+1) - ∫(x-1) ^(1/2)]d(x-1)]

=1/2*[2/3*(x+1)^(3/2) -2/3*(x-1)^(3/2)] + c

=1/3*[(x+1)^(3/2-(x-1)^(3/2)] + c

10樓:老黃知識共享

分理有理化得兩個根式的差/2,因此拆成兩個積分差的二分之一,

一個是根號(x+1)的積分,得2根號[(x+1)^3]/3, 一個得2根號[(x-1)^3]/3,

結果是(根號[(x+1)^3]-根號[(x-1)^3])/3+c.

如何確定函式的不定積分?

11樓:就一水彩筆摩羯

首先,你的理解是沒問題的。

實際上,這個f(x)+c完全可以合併為f(x),也就是 ∫f(x)dx=f(x)

那麼對於定積分自然而然就是 f(b)-f(a)雖然c的取值是任意的,但是一旦約束條件給定後,c就確定了,不會再變化。所以在同一個定積分運算過程中,這個c是相同的。

12樓:情書簡單不簡愛

這個第一種換元法完美解決問題

13樓:匿名使用者

∫e^(-5x+2)dx = (-1/5)∫e^(-5x+2)d(-5x+2) = -(1/5)e^(-5x+2) + c

求問這個不定積分如何解?過程詳細一點,謝謝。∫dx/x(1+2lnx) 10

14樓:匿名使用者

∫dx/x(1+2lnx)

= ∫[1/(1+2lnx)] dlnx

= (1/2)ln(1+2lnx) + c

記作∫f(x)dx或者∫f(高等微積分中常省去dx),即∫f(x)dx=f(x)+c。其中內∫叫做積分號,f(x)叫做被積函式,容x叫做積分變數,f(x)dx叫做被積式,c叫做積分常數或積分常量,求已知函式的不定積分的過程叫做對這個函式進行不定積分。

常用積分公式:

1)∫0dx=c

2)∫x^udx=(x^(u+1))/(u+1)+c

3)∫1/xdx=ln|x|+c

4)∫a^xdx=(a^x)/lna+c

5)∫e^xdx=e^x+c

一般定理

定理1:設f(x)在區間[a,b]上連續,則f(x)在[a,b]上可積。

定理2:設f(x)區間[a,b]上有界,且只有有限個間斷點,則f(x)在[a,b]上可積。

定理3:設f(x)在區間[a,b]上單調,則f(x)在[a,b]上可積。

15樓:鍾雲浩

∫dx/x(1+2lnx)

= ∫[1/(1+2lnx)] dlnx

= (1/2)ln(1+2lnx) + c

不定積分問題,不定積分的問題

分享一種解法,bai應用du尤拉公式 e zhi ix cosx isinx 求解。dao 設i1 專e 屬 ax cos bx dx,i2 e ax sin bx dx。i1 ii2 e ax ibx dx 1 a bi e ax ibx c1 a bi a2 b2 cosbx isinbx e ...

不定積分問題,不定積分問題計算

當然不滿足,你弄反了,df x f x dx 你這個跟不定積分有什麼關係?不是微分問題嗎?而且 要注意是誰的微分,跟著寫下去就行 ssgnjesxfrfv 滾滾滾滾滾滾滾滾滾滾滾滾滾滾滾滾滾滾滾滾滾滾滾滾滾 不定積分問題?這可以通過integration by parts得來的來。我這裡簡單做 自其...

不定積分的證明,不定積分證明

關鍵 微積分 積分與積分變數記號無關 對勾函式的基本不等式。不定積分證明 假設原函式存在 f x limit x 0 f x limit x 0 f x 1 limit x 0 f x limit x 0 f x 0 由於 limit x 0 f x limit x 0 f x 所以 f x 0 不...