1樓:匿名使用者
x>0f'x= 1/x -1/2 x-1/2
=1/(2x) ×(2-x²-x)
=-1/(2x)(x²+x-2)
=-1/(2x)(x+2)(x-1)
x<1, f'x>0
x>1,f'x<0
所以fx的極大值=f(1)=-1/4-1/2=-3/4
2樓:
f(x)=lnx-1/4x²-1/2x
f′(x)=1/x-1/2x-1/2=(2-x²-x)/(2x)=-(x+2)(x-1)/(2x)
定義域x>0
x∈(0,1)時f(x)單調增,x∈(1,+∞)時f(x)單調減極大值f(1)=ln1-1/4-1/2=-3/4
3樓:匿名使用者
解:f(x)=lnx- x²/4-x/2
f'(x)=1/x- x /2-1/2 =(x+2)(1-x)/(2x)
極值點是 x=1 或 -2 ∵ x>0∴ x=1是極值點
f(1)=ln1- 1²/4-1/2 =0-1/4-1/2=-3/4∴f(x)=lnx- x²/4-x/2 的極值是-3/4.
設函式fx={2x 1,x大於等於1 x的平方減2x減2,x小於1}若fx0大於1,求x
4樓:o客
^親,網友,您說bai的是不du是下面的問題:
設函式fx={2x-1,x大於zhi等於1 ;x的平方減2x減2,x小於dao1,若fx0大於1,求x0取值範專圍。
當x0≥1,
2x0-1>1,
x0>1;
當x0<1,
x0^屬2-2x0-2>1,
x0^2-2x0-3>0,
x0<-1, 或x0>3,
x0<-1.
綜上,x0<-1 或 x0>3.
送您 2015 中秋快樂!
函式,導數 設f(x)=1/2x²+lnx-mx 求f(x)的單調區間和零點個數
5樓:買昭懿
f(x) = 1/2x² + lnx - mx定義域:x>0
f ′(x) = x + 1/x - m = (√x-1/√x)² + 2-m = (x²-mx+1)/x
當m≤2時:
f′(x) = (√x-1/√x)² + 2-m ≥ 0單調增區間:(0,+∞)
零點個數為1個
當m>2時:
f ′(x) = (x²-mx+1)/x =單調增區間:(0,[m-√(m²-4)]/2),([m+√(m²-4)]/2,+∞)
單調減區間:([m-√(m²-4)]/2,m+√(m²-4)]/2)
函式fx=lnx-x² +x求極值詳細過程怎麼算求極值題
6樓:買昭懿
f(x)=lnx-x² +x
定義域x>0
f′(x) = 1/x-2x+1 = -(2x²-x-1)/x = -(2x+1)(x-1)/x
x<1時↑,x>1時↓
x=1時有極大值f(1) = ln1-1²+1 = 0
已知函式f x 1 2x2-alnx若函式fx在x=2取得極值,求a的值
7樓:買昭懿
f(x) = 1+2x²-alnx
f ′(x) = 4x-a/x
x=2時取得極值
f ′(2) = 4*2-a/2=0
a=16
設f(x)=1/2x^2-klnx (k>0) (1)求f(x)的單調區間和極值 5
8樓:匿名使用者
(1)f(x)的導數是x-k/x,令x-k/x等於0,由於x>0,k>0,所以x=根號k
所以極值是1/2k-/1/2klnk
令x-k/x<0,得0<x<根號k,則f(x)的遞減區間為(0,根號k),同理得遞增區間為(根號k,﹢∞)
(2)由(1)可知,當k=e的時候極值為0,所以若f(x)有零點,則k≥e
可知f(1)=1/2,f(根號e)=1/2e-1/2k,由k≥e得f(根號e)<0
而f(x)的遞減區間為(0,根號k),(1,√e)是它的子集
所以f(x)在區間(1,√e)僅有一個零點
9樓:善言而不辯
(1)f(x)=½x²-klnx 定義域x>0f'(x)=x-k/x
∵k>0
∴駐點x=√k
f''(x)=1+k/x²>0
∴駐點是極小值點,極小值=k/2-½klnk單調遞減區間x∈(0,√k),單調遞增區間x∈(√k,+∞)(2)f(x)有零點,則極小值=k/2-½klnk≤0令g(k)=k/2-½klnk
g'(k)=-0.5lnk
極大值點k=1
k∈(1,+∞) g(k)單調遞減
g(e)=e/2-e/2=0
∴k≥e→√k>√e
由(1)區間(1,√e)位於單調遞減區間
∵f(√e)=½e-½k≤0
∴由連續函式零點定理,f(x)在區間(1,√e)有僅有一個零點
設函式f xax 1x 1 ,其中a R
x 1,2 時g x 1 ax x 2,3 時g x 1 a x 1 兩段copy函式均為單調一次函式 以下需分情況討論 若g x 1遞增,g x 2遞增,即a 0時,g x 最大值和最小值分別為2 3a和1 a,此時h 1 2a 若g x 1遞減,g x 2遞增,即01 2時,最大值為g 1 當a...
設函式f x2k 1 a的x次方減a的x次方,且a 0且a不等於0在R上為奇函式,求k的值
這個貌似解不出來,只要k 1 2,這函式一定是奇函式。設函式f x ka的x次方 a的 x次方 a 0且a 1 是奇函式 15 f x k a x a x f x k a x a x 由於f x 為奇函式,則f x f x 即k a x a x k a x a x 則 k 1 a x 1 k a x...
已知函式fxx平方ax1,gx2x1,若對
f x x2 ax 1 拋物線開孔bai向上,頂點du為最小值zhi g x 2x 1 2,3 3 g x 5 f x 2x a 駐點x a 2 拋物線頂點 當a 2 1,區間 dao在駐點右側,回f x 0,f x 單調遞增,最大值 f 2 5 2a 5 即0 a 2 當a 2 2,區間在駐點左側...