1樓:手機使用者
由an+1=an+2n+1得an+1-an=2n+1則baian=(duan-an-1
)zhi+(an-1-an-2)+…+(a3-a2)+a1=[2(n-1)+1]+[2(n-2)+1]+…+(2×2+1)+(2×1+1)+1
=2[(n-1)+(n-2)+…+2+1]+(n-1)+1=2×(n?1)n
2+(n-1)+1
=(n-1)(
daon+1)+1
=n2,
所以數列
專的通項公屬式為an=n2.
已知數列{an}中,a1=2,滿足an+1=an+2n,求數列{an}的通項公式。
2樓:宇文仙
^a(n+1)=an+2n
那麼a(n+1)-an=2n
所以抄a2-a1=2*1
a3-a2=2*2
...an-a(n-1)=2(n-1)
疊加得an-a1=2[1+2+...+(n-1)]=n(n-1)=n^襲2-n
所以an=n^2-n+a1=n^2-n+2如果不懂,請追問,祝學習愉快!
3樓:匿名使用者
a2-a1=2
a3-a2=4
.....
an-a(n-1)=2(n-1)
各式來相加
,源an-a1=2+4+....2(n-1)=(n-1)(2+2n-2)/2=n(n-1)
an=n^bai2-n+2
n=1也適合du
數列{zhian}的通項dao公式
an=n^2-n+2
4樓:斷鷹攀崖
a(n+1)-an=2n
a(n+2)-a(n+1)=2(n+1)……
已知數列{an}滿足an+1=an+2n+1,用累加法求數列{an}的通項公式
5樓:匿名使用者
用疊加法
由an+1 - an = 2n+ 1得baian - an-1 = 2(
dun-1)+ 1 ⑴
an-1 -an-2 = 2(n-2)+ 1 ⑵…zhi…
a2 - a1 = 2*1 + 1 (n-1)
把上面1式dao+2式+到(n-1)式子 左邊與左版邊相加得an - a1
右邊與右權邊相加得n2 -1
所以an = a1 + n2 - 1
6樓:匿名使用者
an+1=an+2n+1
a2=a1+2+1
a3=a2+4+1
...an=(an-1)+2(n-1)+1a2+..+an=a1+....(an-1)+2+4+..+2(n-1)+1×(n-1)
an=(a1)+2+4+..+2(n-1)+(n-1)=(a1)+n×(n-1)+(n-1)=a1+(n-1)²
an=a1+(n-1)²
7樓:張海東
應該告訴a1吧??????????
已知數列an 滿足a1=1 an+1=an/1+an 求數列an的通項公式
8樓:116貝貝愛
數列an的通項公式為:2n-1
解題過程如下:
由an+1=2an+1得an+1+1=2(an+1)
又an+1≠0,
∴an+1+1
an+1
=2即為等比數列
∴an+1=(a1+1)qn-1
即an=(a1+1)qn-1-1
∴=2•2n-1-1
∴=2n-1
求數列極限的方法:
設一元實函式f(x)在點x0的某去心鄰域內有定義。如果函式f(x)有下列情形之一:
1、函式f(x)在點x0的左右極限都存在但不相等,即f(x0+)≠f(x0-)。
2、函式f(x)在點x0的左右極限中至少有一個不存在。
3、函式f(x)在點x0的左右極限都存在且相等,但不等於f(x0)或者f(x)在點x0無定義。
則函式f(x)在點x0為不連續,而點x0稱為函式f(x)的間斷點。
對於一個數列,如果任意相鄰兩項之差為一個常數,那麼該數列為等差數列,且稱這一定值差為公差,記為 d ;從第一項 a1到第n項 an的總和,記為sn 。
對於一個數列 ,如果任意相鄰兩項之商(即二者的比)為一個常數,那麼該數列為等比數列,且稱這一定值商為公比 q ;從第一項a1 到第n項an 的總和,記為tn 。
9樓:憶安顏
an=1/n
解:因為an+1=an/1+an
所以兩邊同時取倒數得1/an+1=1+an/an=1/an+1
等價於1/an+1-1/an=1
所以(1/a2-1/a1)+(1/a3-1/a2)+...+(1/an+1-1/an)=1/an+1-1/a1=n(應為括號裡都為1,一起加上的總和)
所以得到1/an+1-1/a1=n即1/an+1-1=n
所以1/an+1=n+1
所以an=1/n
擴充套件資料
如果數列的第n項an與n之間的關係可以用一個公式來表示,這個公式叫做數列的通項公式。有的數列的通項可以用兩個或兩個以上的式子來表示。沒有通項公式的數列也是存在的,如所有質陣列成的數列。
性質1、若已知一個數列的通項公式,那麼只要依次用1,2,3,...去代替公式中的n,就可以求出這個數列的各項。
2、不是任何一個無窮數列都有通項公式,如所有的質陣列成的數列就沒有通項公式。
3、給出數列的前n項,通項公式不唯一。
4、有的數列的通項可以用兩個或兩個以上的式子來表示。
10樓:drar_迪麗熱巴
(1)∵∵an+1=2an+1,
∴an+1+1=2(an+1),
∵a1=1,∴a1+1=2≠0,
∴數列是以2為首項,2為公比的等比數列,
∴an+1=2?2n-1=2n,
即an=2n-1,求數列的通項公式an=2n-1;
(2)若數列滿足4b1?14b2?1…4bn?1=(an+1) bn(n∈n*),
則4b1?14b2?1…4bn?
1=(2n) bn,即2[b1+b2+…+bn-n]=nbn,①2[b1+b2+…+bn+1-(n+1)]=(n+1)bn+1,②,②-①得2(bn+1-1)=(n+1)bn+1-nbn,即(n-1)bn+1-nbn+2=0,③
nbn+2-(n+1)bn+1+2=0,④③-④,得nbn+2-2nbn+1+nbn=0,即bn+2-2bn+1+bn=0,
則bn+2+bn=2bn+1,
∴是等差數列.
等差數列是指從第二項起,每一項與它的前一項的差等於同一個常數的一種數列,常用a、p表示。這個常數叫做等差數列的公差,公差常用字母d表示。
例如:1,3,5,7,9……2n-1。通項公式為:
an=a1+(n-1)*d。首項a1=1,公差d=2。前n項和公式為:
sn=a1*n+[n*(n-1)*d]/2或sn=[n*(a1+an)]/2。
11樓:浩然之氣
是an+1還是a(n+1)
已知數列{an},a1=1,an+1=2an+3·2n+1。 (1)證明數列{an/2n}是等差數列 (2)求{an}通項公式
12樓:匿名使用者
(1)由a1=3,an+1+an=3•2n,n∈n*.得:
an+1−2n+1=−(an−2n),
所以數列是以a1-2=1為首項,公比為-1的等比數列,
∴an−2n=(-1)n-1,所以an=2n+(−1)n−1;
(2)假設存在連續三項an-1,an,an+1成等差數列,則由已知得:
2(2n+(-1)n-1)=2n-1+(-1)n-2+2n+1+(-1)n,(n≥2)
化簡得2n-1=22×(-1)n-1,顯然當n=3上式成立,
所以存在數列中的第
二、三、四項構成等差數列;
(3)由1<r<s且r,s∈n*,結合通項可知a1<ar<as,
由a1,ar,as成等差數列,可得2ar=a1+as,
即2•2r+2(-1)r-1=3+2s+(-1)s-1,整理得2r+1-2s=3-2(-1)r-1+(-1)s-1,
因為1<r<s且r,s∈n*,所以2r+1-2s的可能取值為0,8,…,而3-2(-1)r-1+(-1)s-1∈[0,6],
∴2r+1-2s=0,
∴s=r+1(r≥2,r∈n).
13樓:大燕慕容倩倩
對於數列問題,如果不加幾個括號,還真的看不明白到底是什麼意思。
首先,說明一下,芊芊理解的遞推式是這樣的。
a(n+1)=2a(n)+3×2n+1。(這是芊芊接下來做題的基礎。)
由上式可得
a(n+1)+6(n+1)+7=2[a(n)+6n+7]令b(n)=a(n)+6n+7,可得
b(1)=14,b(n+1)=2(n)。
那麼,可得b(n)=7×(2^n)
即有a(n)+6n+7=7×(2^n)
稍作整理,可得
a(n)=7×(2^n)-6n-7。
碼字不易,敬請採納。
14樓:匿名使用者
你是想寫2ⁿ⁺¹是吧,如果是,那麼:
(1)a(n+1)=2an+3·2ⁿ⁺¹
等式兩邊同除以2ⁿ⁺¹
a(n+1)/2ⁿ⁺¹=an/2ⁿ +3
a(n+1)/2ⁿ⁺¹ -an/2ⁿ=3,為定值a1/2=½
數列是以½為首項,3為公差的等差數列
(2)an/2ⁿ=½+3·(n-1)=3n - 5/2an=(6n-5)·2ⁿ⁻¹
n=1時,a1=(6·1-5)·2⁰=1,同樣滿足表示式數列的通項公式為an=(6n-5)·2ⁿ⁻¹
已知數列{an}滿足an+1=an+(2n+1)2^n,a1=1求數列{an}的通項公式
15樓:匿名使用者
^解:a(n+1)=an+(2n+1)×2ⁿ=n×2^(n+1)+2ⁿ
a(n+1)-an=n×2^(n+1)+2ⁿ
an-a(n-1)=(n-1)×2ⁿ+2^(n-1)
a(n-1)-a(n-2)=(n-2)×2^(n-1)+2^(n-2)
…………
a2-a1=1×2²+2
累加an-a1=1×2²+2×2³+...+(n-1)×2ⁿ+ 2+2²+...+2^(n-1)
令**=1×2²+2×2³+...+(n-1)×2ⁿ
則2**=1×2³+2×2⁴+...+(n-2)×2ⁿ+(n-1)×2^(n+1)
**-2**=-**=2²+2³+...+2ⁿ -(n-1)×2^(n+1)
**=(n-1)×2^(n+1)-(2²+2³+...+2ⁿ)
an-a1=**+2+2²+...+2^(n-1)
=(n-1)×2^(n+1) -(2²+2³+...+2ⁿ)+2+2²+...+2^(n-1)
=(n-1)×2^(n+1) +2 -2ⁿ
=(2n-3)×2ⁿ+2
an=a1+(2n-3)×2ⁿ+2=(2n-3)×2ⁿ+2+1=(2n-3)×2ⁿ+3
n=1時,a1=(2-3)×2+3=-2+3=1,同樣滿足。
數列的通項公式為an=(2n-3)×2ⁿ+3。
已知數列an滿足a1 1,an 1 2an1)n
解答 證明bai 由an 1 an 6an 1,du得 an 1 2an 3 zhian 2an 1 n 2 a1 5,a2 5,a2 2a1 15,故數列是以15為首項,3為公dao比的等比數列 回 數列滿足a1 5,a2 5,an 1 an 6an 1 n 2,n n 的前三項分別為5 5 35...
已知數列an滿足an 1 2an 3 2n 1,且a1 20求證 數列an2n為等差數列,並求出數列an的通項
解答 i 證明 an 1 2an 3 2n 1,an 1n 1?an n 3,數列為等差數列,首項為專a 2 10,公差為3 an n 10 3 n 1 屬 3n 13,an 3n 13 2n ii 解 數列的前n項和sn 10?2 7?22 3n 16 2n 1 3n 13 2n,2sn 10?2...
已知數列an滿足 a1 1,nan 1 2 n 1 an n n 11 若bn an n 1,試證明bn為等比數列 2 求an和Sn
為方便識別,以下將a n 1 an表示an的第n 1 n項,b n 1 bn表示bn的第n 1 n項 1 由na n 1 2 n 1 an n n 1 兩邊同除n n 1 得 a n 1 n 1 1 2 an n 1 由bn an n 1,則 b n 1 2bn 即bn為等比數列且bn b1 2 n...