1樓:匿名使用者
假設√7是有理數,那麼它可以表示成p/q的形式,其中p、q為互質的正整數。
將√7=p/q左右同時
回平方並變換
p^2=7·答q^2
因為等式右邊包含7的因數,所以p必定為7的倍數。令p=7m,其中m為正整數
49·m^2=7·q^2
7·m^2=q^2
因為等式左邊包含7的因數,所以q必定為7的倍數。
綜上所述,p、q均為7的倍數,這與假設矛盾,因此√7不是有理數,而在實數範圍內,不是有理數的實數就是無理數。
如何證明跟好5 根號7 都是無理數
2樓:master繁星
兩個差不多的,就做一個根號5的
反證法:假設根號5為有理
數,則設根號5=a/b,其中ab互質,ab為正整數則5=a^2/b^2,a^2=5b^2
從而a是5的倍數,從而左邊為25的倍數,從而b也是5的倍數,這與假設ab互質矛盾
從而根號5是無理數
希望能幫到您,望採納
3樓:匿名使用者
通俗地說,無理數是不能化為分數的數,
嚴格地說,無理數就是不能寫成兩個整數比的數。
用反證法證明√5是無理數。
設√5不是無理數而是有理數,則設√5=p/q(p,q是正整數,且互為質數,即最大公約數是1)
兩邊平方,5=p^2/q^2, p^2=5q^2(*)p^2含有因數5,設p=5m
代入(*),25m^2=5q^2, q^2=5m^2q^2含有因數5,即q有因數5
這樣p,q有公因數5,
這與假設p,q最大公約數為1矛盾,
√5=p/q(p,q是正整數,且互為質數,即最大公約數是1)不成立,√5不是有理數而是無理數。
7 同理
請證明:根號三是無理數
4樓:風之鷂
^^1、假設根號3=p/q(p、q為互質整數),則p^2=3q^2
所以3整除p^2,因3是質數,所以3整除p,可設p=3t,則q^2=3t^2,所以3整除q
因此p和q有公約數3,與p和q互質矛盾,所以根號3是無理數
2、設x=根號3,則有方程x^2=3
假設x^2=3有有理數解x=p/q(p、q為互質整數),根據牛頓有理根定理p整除3,q整除1,所以p=1或3,q=1,從而x=1或3,顯然x=1或3不是方程x^2=3的根,矛盾.
3、設x=根號3=p/q,(p,q)=1,所以存在整數s,t使ps+qt=1
根號3=根號3*1=根號3(ps+qt)=(√**)s+(√3q)t=3qs+pt為整數,矛盾
拓展資料:
由無理數引發的數學危機一直延續到19世紀下半葉。2023年,德國數學家戴德金從連續性的要求出發,用有理數的「分割」來定義無理數,並把實數理論建立在嚴格的科學基礎上,從而結束了無理數被認為「無理」的時代,也結束了持續2000多年的數學史上的第一次大危機。
5樓:匿名使用者
^證明根號3是無理數,使用反證法
如果√3是有理數,必有√3=p/q(p、q為互質的正整數)兩邊平方:3=p^2/q^2
p^2=3q^2
顯然p為3的倍數,設p=3k(k為正整數)有9k^2=3q^2 即q^2=3k^2
於是q於是3的倍數,與p、q互質矛盾
∴假設不成立,√3是無理數
6樓:雄鷹
分析:①有理數的概念:
「有限小數」和「無限迴圈小數」統稱為有理數。
整數和分數也統稱為有理數。
所有的分數都是有理數,分子除以分母,最終一定是迴圈的。
②無理數的概念:無限不迴圈小數,可引申為「開方開不盡的數」。
③反證法的要領是假設一個明顯荒謬的結論成立,然後正確地證明原假設是錯誤的。
解:假設(√3)是有理數,
∵ 1<3<4
∴(√1)<(√3)<(√4)
即:1<(√3)<2
∴(√3)不是整數。
∵整數和分數也統稱為有理數,而(√3)不是整數
∴在假設「(√3)是有理數」的前提下,(√3)只能是一個分子分母不能約分的分數。
此時假設 (√3) = m/n(m、n均為正整數且互質,二者不能再約分,即二者除1外再無公因數)
兩邊平方,得:
m² / n² = 3
∴m² 是質數3的倍數
我們知道,如果兩個數的乘積是3的倍數,那麼這兩個數當中至少有一個數必是3的倍數。
∴由「m² (m與m的乘積) 是質數3的倍數」得:正整數m是3的倍數。
此時不妨設 m = 3k(k為正整數)
把「m = 3k」 代入「m² / n² = 3」 ,得:
(9k²) / n² = 3
∴3k² = n²
即:n² / k² = 3
對比「m² / n² = 3「 同理可證
正整數n也是3的倍數
∴正整數m和n均為3的倍數
這與「m、n均為正整數且互質」相矛盾。
意即由原假設出發推出了一個與原假設相矛盾的結論,
∴原假設「(√3) = m/n(m、n均為正整數且互質,二者不能再約分,即二者除1外再無公因數)」是不成立的。
∴(√3) 不能是一個分子分母不能約分的分數
而已證(√3) 不是整數
∴(√3) 既 不是整數也不是分數,即(√3) 不是有理數。
∴(√3) 是無理數。
7樓:遲沛山告琳
方法一:假設根號3=p/q(p、q為互質整數),則p^2=3q^2
所以3整除p^2,因3是質數,所以3整除p,可設p=3t,則q^2=3t^2,所以3整除q
因此p和q有公約數3,與p和q互質矛盾,所以根號3是無理數
方法二:設x=根號3,則有方程x^2=3
假設x^2=3有有理數解x=p/q(p、q為互質整數),根據牛頓有理根定理p整除3,q整除1,所以p=1或3,q=1,從而x=1或3,顯然x=1或3不是方程x^2=3的根,矛盾。
方法三:設x=根號3=p/q,(p,q)=1,所以存在整數s,t使ps+qt=1
根號3=根號3*1=根號3(ps+qt)=(√**)s+(√3q)t=3qs+pt為整數,矛盾
8樓:樸卉吾嘉懿
^反證:假設根號3是有理數,則存在兩個互質整數m和n使得根號3=m/n.兩邊平方並整理得m^2=3n^2,
於是m是3的倍數,令m=3q,
代入上式整理得:n^2=3q^2,
故n也是3的倍數,這與m,n互質矛盾。故根號3是無理數。證畢。
如何證明根號三是無理數,如何證明根號3是無理數
分析 有理數的概念 有限小數 和 無限迴圈小數 統稱為有理數。整數和分數也統稱為有理數。所有的分數都是有理數,分子除以分母,最終一定是迴圈的。無理數的概念 無限不迴圈小數,可引申為 開方開不盡的數 反證法的要領是假設一個明顯荒謬的結論成立,然後正確地證明原假設是錯誤的。解 假設 3 是有理數,1 3...
怎麼證明根號5是無理數
假設存在這樣一個有理數p,p 2 2.再設p a b,a b是兩正整數,且既約,就是沒有除1外的共因子,使得 a b 2 2 變形以後得a 2 2 b 2,推出a 2是個偶數,同時為了滿足a 2是個平方數,那b 2必須包含一個因子2,所以a 2 b 2不是既約的,那a b也不是既約的啦 與前提矛盾,...
如何證明根號2根號3是無理數需要嚴謹證明
益智數學題 請證明 3 2一定為無理數。設m 根號2 根號3 為有理數 則m 2亦為有理數,而m 2 5 2根號6 為無理數,矛盾 所以m為有理數 反證法 若根bai號2加根號3是分數 即du整數與整數的比 zhi或說是有dao 理數回吧 則平方以答後也應是有理數 即5 2根號6也是有理數 即根號6...