f x 具有一階連續導數怎麼理解

2021-03-11 01:46:22 字數 3233 閱讀 8341

1樓:不是苦瓜是什麼

意思是:f(x)可導,抄並且導函式是連續的。

一個函式在某一點的導數描述了這個函式在這一點附近的變化率。導數的本質是通過極限的概念對函式進行區域性的線性逼近。當函式f的自變數在一點x0上產生一個增量h時,函式輸出值的增量與自變數增量h的比值在h趨於0時的極限如果存在,即為f在x0處的導數。

物理學、幾何學、經濟學等學科中的一些重要概念都可以用導數來表示。如,導數可以表示運動物體的瞬時速度和加速度、可以表示曲線在一點的斜率、還可以表示經濟學中的邊際和彈性。

函式在各點的導數值不同,因此存在一個該函式的導函式,也就是每一個x對應一個值,這個值就是原函式在該點的導數值,這就是導函式,簡稱導數。

要弄明白導函式連續的意義首先要搞清楚函式連續的意思,就是說函式的影象是連在一起的,中間沒有斷開(沒有間斷點)。導數表示願函式在該點的斜率大小,導函式連續說明原函式的斜率是連續變化的,而並沒有在某點發生突變。

關於函式的導數和連續有常用的推論:

1、連續的函式不一定可導.

2、可導的函式是連續的函式.

3、越是高階可導函式曲線越是光滑.

4、存在處處連續但處處不可導的函式.

2樓:王科律師

如果連續,那麼他的一階偏導都可以互換,次序已經不是問題

3樓:東風冷雪

導數存在

各個方向的導數相等

4樓:bluesky黑影

意思是:f(x)可導,並且導函式是連續的

設y=f(x)是具有一階連續導數的函式,f(0)=1,f'(0)=2,求[1/f(x)]'|x=3

5樓:體育wo最愛

|已知copyf(x)具有一階連續導數bai,且duf(0)=1,f'(0)=2

所以zhi,daof(x)=2x+1

那麼:[1/f(x)]'=[1/(2x+1)]'=(0-2)/(2x+1)²=-2/(2x+1)²

所以,[1/f(x)]'|=-2/49

6樓:匿名使用者

你的圖中右上角的-1不是負一次方,而是指f(x)的反函式

設f具有一階連續的偏導數是什麼意思

7樓:pasirris白沙

這句話的意思是告訴你:

1、對於一元函式來說,在定義域

內是處處可導的;

2、對於二元函式來說,在定義域內是處處可微的。

(對於二元函式來說,所有方向可導,才是可微)就二元函式,說明如下:

a、原來的函式在某一個方向可以求偏導,

偏導的值是連續的,意味著,

原函式的圖形,沒有出現斷裂、摺痕、裂縫、

洞隙、重疊、、、等等問題。

否則,導函式不可能連續。

b、這個連續,不表示下一階可導。

類似於一元函式:

連續函式不一定可導,既要連續,又要可導才行。

c、如果樓主學過梯度gradient、方向導數directionalderivative,就更好理解了:

梯度是向量,是沿x方向的導函式作為一個分量,沿y方向的導函式作為一個分量。

然後向量合成,兩個分量連續變化,就變成了所有方向的方向導數,也就是可微了。

說明:可導、可微的區別,是中國微積分概念。

不是國際微積分概念。

8樓:匿名使用者

就是一階偏導數是連續的。

9樓:匿名使用者

設函式f(x,y)在區間dxy具有一階連續偏導數,即偏導數∂f(x,y)/∂x,∂f(x,y)/∂y存在,且∂f(x,y)/∂x,∂f(x,y)/∂y在dxy內連續。

還可以得到:因為f(x,y)在區間dxy具有一階連續偏導數,所以f(x,y)在區間dxy可微。

又可以得到:1、因為f(x,y)在區間dxy可微,所以f(x,y)在區間dxy連續;

2、因為f(x,y)在區間dxy可微,所以f(x,y)在區間dxy偏導數存在。

設f具有一階連續的偏導數是什麼意思?

10樓:pasirris白沙

這句話的意思是告訴你:

1、對於一元函式來說,在定義域內是處處可導的;

2、對於專

二元函式來說,屬在定義域內是處處可微的。

(對於二元函式來說,所有方向可導,才是可微)就二元函式,說明如下:

a、原來的函式在某一個方向可以求偏導,

偏導的值是連續的,意味著,

原函式的圖形,沒有出現斷裂、摺痕、裂縫、

洞隙、重疊、、、等等問題。

否則,導函式不可能連續。

b、這個連續,不表示下一階可導。

類似於一元函式:

連續函式不一定可導,既要連續,又要可導才行。

c、如果樓主學過梯度gradient、方向導數directionalderivative,就更好理解了:

梯度是向量,是沿x方向的導函式作為一個分量,沿y方向的導函式作為一個分量。

然後向量合成,兩個分量連續變化,就變成了所有方向的方向導數,也就是可微了。

說明:可導、可微的區別,是中國微積分概念。

不是國際微積分概念。

11樓:116貝貝愛

意思就是說f的這個偏導數是連續的。

一、偏導數就是在數學中,一個多變數的函

回數的偏導數,就是它關於其答中一個變數的導數而保持其他變數恆定(相對於全導數,在其中所有變數都允許變化)。偏導數在向量分析和微分幾何中是很有用的。

二、在一元函式中,導數就是函式的變化率。對於二元函式研究它的「變化率」,由於自變數多了一個,情況就要複雜的多。

三、在 xoy 平面內,當動點由 p(x0,y0) 沿不同方向變化時,函式 f(x,y) 的變化快慢一般說來是不同的,因此就需要研究 f(x,y) 在 (x0,y0) 點處沿不同方向的變化率。

四、求法,當函式 z=f(x,y) 在 (x0,y0)的兩個偏導數 f'x(x0,y0) 與 f'y(x0,y0)都存在時,我們稱 f(x,y) 在 (x0,y0)處可導。如果函式 f(x,y) 在域 d 的每一點均可導,那麼稱函式 f(x,y) 在域 d 可導。

五、對應於域 d 的每一點 (x,y) ,必有一個對 x (對 y )的偏導數,因而在域 d 確定了一個新的二元函式,稱為 f(x,y) 對 x (對 y )的偏導函式。簡稱偏導數。

12樓:王者歸來黑龍

一會答題一

來會答題

函式fx具有一階連續導數,證明Fx 1 sinx f x 在x 0處可導的充要條件是f(0)

充分性。若f 0 0,則f 0 lim h 0 1 sinh f h h lim h 0 f h h f 0 即充分性成立。必要性。若f 0 存在,有f 0 lim h 0 1 sinh f h f 0 h lim h 0 f h f 0 h sinh f h h f 0 lim h 0 sinh ...

什麼是一階連續導數,什麼是二階連續導數

一階連續導數 就是指函式求導之後 在整個定義域上 其一階導數都是連續的 以此類推,二階連續導數也是一樣的意思 二階連續導數是什麼意思?一般怎麼運用的,在哪些地方用到 二階連續導數即為二階導數,是原函式導數的導數,將原函式進行二次求導。一般的,函式y f x 的導數y f x 仍然是x的函式,則y f...

高等數學。設函式f具有一階連續導數

1 lim x 0 g x 存在且等於a而且lim x 0 g x limf x 0所以a 0 2 g x xf x f x x 2lim x 0 g x lim xf x f x f x 2x limf x 2存在 因此g x 連續 g x f x x x 0 a x 0 1 lim x 0 f ...