1樓:魯樹兵
令φ﹙x﹚bai=xf﹙x﹚ x∈[0,1] 則φ
du﹙x﹚滿足羅爾定理條件
∴存zhi在x使φ'﹙daox﹚=內0
即xf'﹙x﹚+f﹙x﹚=0 f'﹙ x﹚=﹣容f﹙x﹚/x
2樓:匿名使用者
建構函式f(x)=xf(x),對f(x)用羅爾定理
高等數學中的函式如何學習
3樓:匿名使用者
要學好高等數
學的函式,首先了解高等數學的特點。高等數學有三個顯著的特點:高度的抽象性;嚴謹的邏輯性;廣泛的應用性。
( 1 )高度的抽象性
數學的抽象性在簡單的計算中就已經表現出來。我們運用抽象的數字,卻不是每次都把它們同具體的物件聯絡起來。在數學的抽象中只留下量的關係和空間形式,而捨棄了其他一切。
它的抽象程度大大超過了自然科學中一般的抽象。
( 2 )嚴謹的邏輯性
數學中的每一個定理,不論驗證了多少例項,只有當它從邏輯上被嚴格地證明了的時候,才能在數學中成立。在數學中要證明一個定理,必須是從條件和已有的數學公式出發,用嚴謹的邏輯推理方法匯出結論。
( 3 )廣泛的應用性
高等數學具有廣泛的應用性。例如,掌握了導數概念及其運演算法則,就可以用它來刻畫和計算曲線的切線斜率、曲線的曲率等等幾何量;就可以用它來刻畫和計算速度、加速度、密度等等物理量;就可以用它來刻畫和計算產品產量的增長率、成本的下降率等等經濟量; …… 。掌握了定積分概念及其運演算法則,就可以用它來刻畫和計算曲線的弧長、不規則圖形的面積、不規則立體的體積等等幾何量;就可以用它來刻畫和計算變速運動的物體的行程、變力所做的功、物體的重心等等物理量;就可以用它來刻畫和計算總產量、總成本等等經濟量。
高等數學既為其它學科提供了便利的計算工具和數學方法,也是學習近代數學所必備的數學基礎。瞭解了這些就能學好高等數學的函式了。
4樓:匿名使用者
函式考察的題目有以下幾點:
1、定義域
2、值域
3、最值(最大最小)
4、圖象對稱
5、交點
6、平移
而最難的屬於後面3個,因此學習高中函式一定要掌握數學的重要思想,那就是數形結合,幾個典型的函式的圖象一定要牢牢掌握,對於快速而準確的解決問題有非常大的幫助,遇到什麼難題,我們可以共同**一下。
5樓:沙漠射手
我覺得數學學習沒有什麼特別好的拌飯 就是多做題 題做多了 自然就會總結出規律
學習高等數學需要什麼高中基礎?
6樓:飄飄記
基礎知識儘量都學紮實的好。主要需要以下基礎:
1、導數和函式、複變函式與積分。
2、導數和函式要學好,這部分到大學還會進一步學習,大學微積分的學習,跟高中聯絡最緊密的就是函式導數和極限部分,這部分應該學好,空間幾何也用到一些。
3、複變函式與積分的學習,與高中的複數有一點關係,高中學的是基礎定義和部分應用,到大學會把微積分聯絡在一起深入學習,所以,學好複數部分對以後更好的學習有不少幫助。
高等數學指相對於初等數學而言,數學的物件及方法較為繁雜的一部分。
廣義地說,初等數學之外的數學都是高等數學,也有將中學較深入的代數、幾何以及簡單的集合論初步、邏輯初步稱為中等數學的,將其作為中小學階段的初等數學與大學階段的高等數學的過渡。
通常認為,高等數學是由微積分學,較深入的代數學、幾何學以及它們之間的交叉內容所形成的一門基礎學科。主要內容包括:極限、微積分、空間解析幾何與線性代數、級數、常微分方程。
導數和函式要學好,這部分到大學還會進一步學習,大學微積分的學習,跟高中聯絡最緊密的就是函式導數和極限部分,這部分應該學好,空間幾何也用到一些。
指相對於初等數學而言,數學的物件及方法較為繁雜的一部分。廣義地說,初等數學之外的數學都是高等數學,也有將中學較深入的代數。
幾何以及簡單的集合論初步、邏輯初步稱為中等數學的,將其作為中小學階段的初等數學與大學階段的高等數學的過渡。
通常認為,高等數學是由微積分學,較深入的代數學、幾何學以及它們之間的交叉內容所形成的一門基礎學科。
主要內容包括:極限、微積分、空間解析幾何與線性代數、級數、常微分方程。工科、理科研究生考試的基礎科目。
7樓:河傳楊穎
1、導數和函式、複變函式與積分、概率論、線性代數。
2、複變函式與積分的學習,與高中的複數有一點關係,高中學的是基礎定義和部分應用,到大學會把微積分聯絡在一起深入學習,所以,學好複數部分對以後更好的學習有不少幫助。
3、概率論的學習,不再像高中是學習排和組合,當然學好這部分的概率和期望對以後理解很有幫助,概率論更多的是學習其他概率分佈模型。
4、線性代數的學習,是一門工程數學,解方程n元一次組,n維相量、矩陣等等,實際中應用廣泛,好好理解下相量空間,這門學科跟以前聯絡不多,好好學一定會學好的。
在中國理工科各類專業的學生(數學專業除外,數學專業學數學分析),學的數學較難,課本常稱「高等數學」;文史科各類專業的學生,學的數學稍微淺一些,課本常稱「微積分」。
理工科的不同專業,文史科的不同專業,深淺程度又各不相同。研究變數的是高等數學,可高等數學並不只研究變數。至於與「高等數學」相伴的課程通常有:
線性代數(數學專業學高等代數),概率論與數理統計(有些數學專業分開學)。
數學的計算性方面。在初等數學中甚至佔了主導的地位。它在高等數學中的地位也是明顯的,高等數學除了有很多理論性很強的學科之外,也有一大批計算性很強的學科,如微分方程、計算數學、統計學等。
在高度抽象的理論裝備下,這些學科才有可能處理現代科學技術中的複雜計算問題。
最基本的極限過程是數列和函式的極限。數學分析以它為基礎,建立了刻畫函式區域性和總體特徵的各種概念和有關理論,初步成功地描述了現實世界中的非均勻變化和運動。另外一些形式上更為抽象的極限過程,在別的數學學科中也都起著基本的作用。
還有許多學科的研究物件本身就是無窮多的個體,也就說是無窮集合,例如群、環、域之類及各種抽象空間。
8樓:百度使用者
基礎知識儘量都學紮實的好。
⒈導數和函式要學好,這部分到大學還會進一步學習,大學微積分的學習,跟高中聯絡最緊密的就是函式導數和極限部分,這部分應該學好,空間幾何也用到一些。
⒉複變函式與積分的學習,與高中的複數有一點關係,高中學的是基礎定義和部分應用,到大學會把微積分聯絡在一起深入學習,所以,學好複數部分對以後更好的學習有不少幫助。
⒊概率論的學習,不再像高中是學習排和組合,當然學好這部分的概率和期望對以後理解很有幫助,概率論更多的是學習其他概率分佈模型。
⒋線性代數的學習,是一門工程數學,解方程n元一次組,n維相量、矩陣等等,實際中應用廣泛,好好理解下相量空間,這門學科跟以前聯絡不多,好好學一定會學好的。
總之,好學基礎知識,對你的深造學習很有幫助;專業不同,可能學的學科數學也有少許不同,不過不管怎樣,學好基礎知識不是件壞事,更多的體驗還要等你到了大學才能更好地感受。呵呵,希望對你有所幫助。
9樓:匿名使用者
基本不等式知識,函式知識,三角函式公式等等,說實話高等數學和高中數學差別很大,高中的知識也基本難以運用到高等數學上,基本上是不需要什麼基礎的,進入大學學高數大家相當於都是零基礎開始
10樓:我是一頭豬
數學,重要的是思想。
然而,高中數學給予了我們必要的初等數學的知識,如導數,將來發展極限
如將來的空間解析幾何
哪怕是最簡單的集合,將來也為數論做了一定的基礎。
高中數學書上公式所給的推導充滿了數學思想,很重要。
大學數學,或者叫高數,離不開最基礎的。
學習高等數學需要什麼高中基礎?
11樓:大大的
導數和函式、複變函式與積分、概率論、線性代數。
導數和函式要學好,這部分到大學還會進一步學習,大學微積分的學習,跟高中聯絡最緊密的就是函式導數和極限部分,這部分應該學好,空間幾何也用到一些。
複變函式與積分的學習,與高中的複數有一點關係,高中學的是基礎定義和部分應用,到大學會把微積分聯絡在一起深入學習,所以,學好複數部分對以後更好的學習有不少幫助。
概率論的學習,不再像高中是學習排和組合,當然學好這部分的概率和期望對以後理解很有幫助,概率論更多的是學習其他概率分佈模型。
線性代數的學習,是一門工程數學,解方程n元一次組,n維相量、矩陣等等,實際中應用廣泛,好好理解下相量空間,這門學科跟以前聯絡不多,好好學一定會學好的。
指相對於初等數學而言,數學的物件及方法較為繁雜的一部分。廣義地說,初等數學之外的數學都是高等數學,也有將中學較深入的代數、幾何以及簡單的集合論初步、邏輯初步稱為中等數學的,將其作為中小學階段的初等數學與大學階段的高等數學的過渡。
通常認為,高等數學是由微積分學,較深入的代數學、幾何學以及它們之間的交叉內容所形成的一門基礎學科。
主要內容包括:極限、微積分、空間解析幾何與線性代數、級數、常微分方程。工科、理科研究生考試的基礎科目。
12樓:匿名使用者
基本不等式知識,函式知識,三角函式公式等等,說實話高等數學和高中數學差別很大,高中的知識也基本難以運用到高等數學上,基本上是不需要什麼基礎的,進入大學學高數大家相當於都是零基礎開始
13樓:匿名使用者
三角函式、極限、導數
我覺得高數上課好好聽,高中基礎都是浮雲,加油
14樓:匿名使用者
函式的概念 ---> 高等數學主要講函式的微積分;
三角函式的相關公式 ---> 做定積分的時候需要一些三角函式代換;
集合的概念 ---> 多元函式微積分會用到一點;
數列的基本概念 ---> 學習數列極限,收斂性會用到;
都是高中數學中的一些基本概念。
15樓:榮山楊帆
學高數不需要什麼基礎啊,能考上說明基礎都行的,邊學邊補基礎完全沒問題的,我教的學生基本都是高中基礎很差,但是學高數也不會怎麼樣
16樓:幸運的
不需要高中什麼基礎了,如果要說高等數學和高中數學的聯絡的話,也只有微積分部分了。
不過就算高中不怎麼懂導數和定積分這些微積分內容,也可以直接學高等數學了,因為高等數學主要就是講微積分,並且一般高等數學教材都是從頭開始講的,相當於重新學。
17樓:匿名使用者
高中的函式、三角函式、對數、指數等基本函式
18樓:袁總大俠
高中的基本都需要啊,這無分專業,工科學的都一樣。尤其用到三角函式、導數的知識。
19樓:蘇子矝
買一本少學時的高等數學,應該是第四版,你高中數學只要沒掛科就沒什麼問題了,會求導,會高次方程組求解,會簡單的幾何知識,剩下的就是你的耐心和刷題的數目了。基礎好可以買新版的書。
設f x在0 1上連續在0 1內可導,證明 必存在一點0,1 ,使得F 1 2 f
由條件f 0 f 1 0,根據羅爾定理,存在 0,1 滿足f 0。令f x 1 x f x 則f f 1 0 再次運用它羅爾定專理 存在 屬 1 使f 0,即 1 f 2 1 f 0 由於 1,所以1 不等於0,所以 1 f 2f 0,即f 2f 1 證畢 設f x 在 0,1 上連續,在 0,1 ...
設函式f x 在上連續,在 0,1 內可導,且f
令g x f x x,則g 0 0,g 1 2 1 2,g 1 0,根據介值定理,存在a 0,1 2 使得g a 1 4,存在b 1 2,1 使得g b 1 4。再根據羅爾中值定理,存在 a,b 使得g 0,也就是f 1。注意 2 1,與 2 結果形式一致。1 根據連續性。f 可以看成兩個函式y f...
設函式fx在上連續,在a,b上可導,且f
limx趨於baia正du f 3x 2a x a存在 f a limx趨於zhia正 f dao3x 2a limx趨於a正 f 3x 2a x a limx趨於a正 x a 0f x 0 f x 是遞版增函式權。a,b 內 f x f a 0 設函式f x 在 a,b 上連續,在 a,b 上可導...