如果關於x的一元二次方程x 2x C 0沒有實數根,那麼c的取值範圍是

2021-04-22 10:02:06 字數 2004 閱讀 3379

1樓:江湖d老手

a=1,b=-2,c=c。b^2-4ac=4-4c=0因為沒有實數根,所以4-4c<0,所以c>1 採納啊

2樓:不一而足

依題意得,2^2-4c<0

所以c》1

3樓:紫霞仙子在悟空

2的平方減去4c小於零,所以c大於1

如果關於x的一元二次方程x²-6x+c=0(c是常數)沒有實數根,那麼c的取值範圍是______.

4樓:匿名使用者

∵關於x的一元二次方程x²-6x+c=0無實數根∴△=(-6)^2-4*1*c<0,

即36-4c<0,亦即c>9,

∴c的取值範圍是(9,+∞)。

備註對取值範圍應用集合表示,區間是集合的一種特殊形式。

5樓:匿名使用者

∵關於x的一元二次方程x²-6x+c=0無實數根∴δ<0

∵δ=b²-4ac=36-4c

∴36-4c<0

解得:c>9

33.關於 x 的一元二次方程 x2﹣(k+3)x+2k+2=0若方程有一根小於 1,求 k 的取值範圍

6樓:瀛洲煙雨

分析 :

(1)根據方程的係數結合根的判別式,可得△=(k-1)2≥0,由此可證出方程專總有兩個實數根;

(2)利屬用分解因式法解一元二次方程,可得出x1=2、x2=k+1,根據方程有一根小於1,即可得出關於k的一元一次不等式,解之即可得出k的取值範圍.

解答:(1)證明:∵在方程x2-(k+3)x+2k+2=0中,△=[-(k+3)]2-4×1×(2k+2)=k2-2k+1=(k-1)2≥0,

∴方程總有兩個實數根.

(2)解:∵x2-(k+3)x+2k+2=(x-2)(x-k-1)=0,

∴x1=2,x2=k+1.

∵方程有一根小於1,

∴k+1<1,解得:k<0,

∴k的取值範圍為k<0.

本題考查了根的判別式、因式分解法解一元二次方程以及解一元一次不等式,解題的關鍵是:

(1)牢記「當△≥0時,方程有兩個實數根」;

(2)利用因式分解法解一元二次方程結合方程一根小於1,找出關於k的一元一次不等式.

7樓:匿名使用者

(bai1)

△=(k+3)²-4(du2k+2)=k²+6k+9-8k-8=k²-2k+1=(k-1)²≥

zhi0

所以方程總有兩個實數根

(2)(x-k)(x-k-1)=0

x1=k,

daox2=k+1

若方版程只有一個根權小於1,則

k<1且k+1>1,則0

若方程兩個根都小於1,則

k+1<1,則k<0

8樓:匿名使用者

^^(1)

x^2 -(k+3)x+2k+2=0

δbai= (k+3)^2 - 4(2k+2)=k^2-2k+1

=(k-1)^2

>0(2)若方du程有一zhi根小於dao 1,求 k 的取版值範圍權x^2 -(k+3)x+2k+2=0

(x- (k+1))(x-2) = 0

x=2 or k+1

k+1 <1

k<0

9樓:海上漂流

(1)用bai根的判別式:b²-4ac=(k+3)²-4(2k+2)=(k-1)du²≥0

所以方程zhi總有兩個實數根dao;

(2)由於方

程總有一專根為

屬2,另一根為k+1(可用求根公式)

∴必有k+1<1, k<0

10樓:輭詆屍

設f(x)=x^2+(k-1)x+1

則f(x)的影象開口向上

要使f(x)=0一根大於2,一根小於2

則f(2)0得 k>3或k

關於的一元二次方程,關於x的一元二次方程x2m3xm201證明方程總有兩個不相等的實數根2設這個方程的兩個

1 證明 來 m 3 源 2 4m2 5 baim 3 5 2 36 5,du 5 m 3 5 2 0,5 m 3 5 2 36 5 0,即 0,方程有兩個不相等的實數zhi根 2 解dao x1和x2異號.理由如下 x1?x2 m2 0,x1,x2異號 3 解 根據題意得x1 x2 m 3,x1?...

關於x的一元二次方程x2 (m 3)x m

1 x m 3 x m 0 m 3 4m 5m 6m 9 5 m 3 5 36 5 0 所以,方程總有兩個不相等的實數根 2 由韋達定理 x1 x2 m 3,x1x2 c a m 0則 x1 x2 x1x2 x1 x2 2 即 x2 x1 2 則 x2 x1 x1 x2 2 x1 x2 x1 x2 ...

已知關於x的一元二次方程x 2 2x 2 m 0。(1)若方程有兩個不相等的實數根,求實數

解 1 方程有兩個不等的實數根,回 0即4 4 2 m 0,m 1 2 不妨取答m 2代入方程中x2 2x 0,x2 2x 1 1即 x 1 2 1,x l 1 7,x1 0,x2 2。解 zhidao 1 內 04 4 m 1 0 4m 8 m 2 2 x 容2 2x m 1 0 x1 x2 2 ...