二階導數與函式的凹凸性問題,函式的凹凸性是怎樣定義的?(二階導數)

2021-08-04 10:07:06 字數 4456 閱讀 5821

1樓:嚴春叔橋

二階大於零,說明一階導數單調增,一階函式單調,說明函式斜率遞增,而凹函式就是這樣,同理樂得凸函式,有疑問樂意**。

2樓:南傅香仝水

記得高數書上有的。

這裡僅我個人理解的,要是不對就一笑而過吧。

因為,已經說了,f(x)有凹凸性,所以,f(x)或者為先減後增,或者為先增後減。

當二階導數大於0,說明一階導數單調遞增。根據f(x)不是先減後增就是先增後減,所以,在此情況下,f(x)只能為先減後增了。所以,在二階導數大於0時,函式為凹函式。

同理可證二階導數小於0時,函式為凸函式。

僅為個人理解哦!不負責任的哦!

3樓:向秀芳虎錦

函式凹凸性與二次導數有關

如果函式某點的一階導數等於零

該點的二階導數若大於0,則函式在該點是極小值,函式在該點附近是下凹的若該點的二階導數若小於0,則函式在該點是極大值,函式在該點附近是上凸的

若等於0,則該點為拐點

若函式的二階導數恆大於0,函式是下凹的

若函式的二階導數恆小於0,則函式上凸的

從函式的幾何意義來分析:

因為隨著凹凸變化,曲線的切線斜率會出現相應的改變。

1在凹最低處或凸最高處,切線斜率為0,即一階導數為02在凹圖象最低處左右,一階導數從最低處左方的》0趨於右方的<0,這一過程二階導數》0

在凸圖象最高處左右,一階導數從最高處左方的<0趨於右方的》0,這一過程二階導數<0

因此根據二階導數可以判斷函式的凹凸性質

函式的凹凸性是怎樣定義的?(二階導數)

4樓:小史i丶

1、定義為:

設函式f(x)在區間i上有定義,若對i中的任意兩點x₁和x₂,和任意λ∈(0,1),都有:

f(λx₁+(1-λ)x₂)>=λf(x₁)+(1-λ)f(x₂),

則稱f為i上的凸函式,若不等號嚴格成立,即「>」號成立,則稱f(x)在i上是嚴格凸函式。

同理,如果">=「換成「<=」就是凹函式。類似也有嚴格凹函式。

2、從幾何上看就是:

在函式f(x)的圖象上取任意兩點,如果函式圖象在這兩點之間的部分總在連線這兩點的線段的下方,那麼這個函式就是凹函式。同理可知,如果函式影象在這兩點之間的部分總在連線這兩點線段的上方,那麼這個函式就是凸函式。

直觀上看,凸函式就是圖象向上突出來的。

如果函式f(x)在區間i上二階可導,則f(x)在區間i上是凸函式的充要條件是f''(x)<=0;f(x)在區間i上是凹函式的充要條件是f''(x)>=0。

5樓:八葉梧桐

最簡單的方法是從凹凸本身出發

這也是其名稱由來

最好的辦法是用原始定義(任意fx)得

實際上證明不難

比二階導數容易

6樓:匿名使用者

不同的書有不同的定義,有的說二階導數大於0是凹;有的又說二階導數小於0是凹.要看自己用的是什麼書

函式的凹凸性為什麼要用二階導數

7樓:晚夏落飛霜

一階導數反映的是函式斜率,而二階導數反映的是斜率變化的快慢,表現在函式的影象上就是函式的凹凸性。

f′′(x)>0,開口向上,函式為凹函式,f′′(x)<0,開口向下,函式為凸函式。

凸凹性的直觀理解:

設函式y=f(x)在區間i上連續,如果函式的曲線位於其上任意一點的切線的上方,則稱該曲線在區間i上是凹的;如果函式的曲線位於其上任意一點的切線的下方,則稱該曲線在區間i上是凸的。

確定曲線y=f(x)的凹凸區間和拐點的步驟:

1、確定函式y=f(x)的定義域;

2、求出在二階導數f"(x);

3、求出使二階導數為零的點和使二階導數不存在的點;4、判斷或列表判斷,確定出曲線凹凸區間和拐點。

8樓:angela韓雪倩

在函式f(x)的圖象上取任意兩點,如果函式圖象在這兩點之間的部分總在連線這兩點的線段的下方,那麼這個函式就是凹函式。

直觀上看,凸函式就是圖象向上突出來的。比如如果函式f(x)在區間i上二階可導,則f(x)在區間i上是凹函式的充要條件是f''(x)>=0;f(x)在區間i上是凸函式的充要條件是f''(x)<=0;

通俗的講,一個函式求了一階導數(如大於o),只能說明是遞增,但不知是遞增的越來越快還是越來越慢(可以類比加速度的思想),只有求了二階導數才知道遞增的速度,即凹凸性。

擴充套件資料:

設函式f(x)在區間i上定義,若對i中的任意兩點x1和x2,和任意λ∈(0,1),都有 f(λx1+(1-λ)x2)<=λf(x1)+(1-λ)f(x2),若不等號嚴格成立,即"<"號成立,則稱f(x)在i上是嚴格凹函式。

如果"<="換成">="就是凸函式。類似也有嚴格凸函式。

設f(x)在區間d上連續,如果對d上任意兩點a、b恆有f((a+b)/2)<(f(a)+f(b))/2

那麼稱f(x)在d上的圖形是(向上)凹的(或凹弧);如果恆有f((a+b)/2)>(f(a)+f(b))/2

那麼稱f(x)在d上的圖形是(向上)凸的(或凸弧)

這個定義從幾何上看就是:

在函式f(x)的圖象上取任意兩點,如果函式圖象在這兩點之間的部分總在連線這兩點的線段的下方,那麼這個函式就是凹函式。 同理可知,如果函式影象在這兩點之間的部分總在連線這兩點線段的上方,那麼這個函式就是凸函式。

如果函式f(x)在區間i上二階可導,則f(x)在區間i上是凸函式的充要條件是f''(x)<=0;f(x)在區間i上是凹函式的充要條件是f''(x)>=0;

琴生(jensen)不等式(也稱為詹森不等式):(注意前提、等號成立條件)設f(x)為凸函式,則f[(x1+x2+……+xn)/n]≤[f(x1)+f(x2)+……+f(xn)]/n(下凸);設f(x)為凹函式,f[(x1+x2+……+xn)/n]≥[f(x1)+f(x2)+……+f(xn)]/n(上凸),稱為琴生不等式。

加權形式為:f[(a1*x1+a2*x2+……+an*xn)]≤a1f(x1)+a2f(x2)+……+anf(xn)(下凸);f[(a1*x1+a2*x2+……+an*xn)]≥a1f(x1)+a2f(x2)+……+anf(xn)(上凸),其中ai≥0(i=1,2,……,n),且a1+a2+……+an=1.

如果一個函式f(x)在某個區間i上有f''(x)(即二階導數)>0恆成立,那麼在區間i上f(x)的圖象上的任意兩點連出的一條線段,這兩點之間的函式圖象都在該線段的下方,反之在該線段的上方。

結合一階、二階導數可以求函式的極值。當一階導數等於0,而二階導數大於0時,為極小值點。當一階導數等於0,而二階導數小於0時,為極大值點;當一階導數和二階導數都等於0時,為駐點。

9樓:

我是一線高中數學教師,希望能幫到你。

在函式f(x)的圖象上取任意兩點,如果函式圖象在這兩點之間的部分總在連線這兩點的線段的下方,那麼這個函式就是凹函式。

直觀上看,凸函式就是圖象向上突出來的。比如如果函式f(x)在區間i上二階可導,則f(x)在區間i上是凹函式的充要條件是f''(x)>=0;f(x)在區間i上是凸函式的充要條件是f''(x)<=0;

通俗的講,一個函式求了一階導數(如大於o),只能說明是遞增,但不知是遞增的越來越快還是越來越慢(可以類比加速度的思想),只有求了二階導數才知道遞增的速度,即凹凸性。

為什麼二階導數能判斷函式凹凸性?

10樓:匿名使用者

因為隨著凹凸變化,曲線的切線斜率會出現相應的改變。

1在凹最低處或凸最高內處,切線斜率為0,即一階容導數為02在凹圖象最低處左右,一階導數從最低處左方的》0趨於右方的<0,這一過程二階導數》0

在凸圖象最高處左右,一階導數從最高處左方的<0趨於右方的》0,這一過程二階導數<0

因此根據二階導數可以判斷函式的凹凸性質

凹凸性與函式一階導數二階導數的關係

11樓:五七六一零四二

二階導數大於零為凹(下凸),二階導數小於零為凸(上凸),凹凸性與一階導數無關

階導數與函式的凹凸性問題為什麼二階導數大於0,函

12樓:

這裡僅我個人理解的,要是不對就一笑而過吧。

因為,已經說了,f(x)有凹版凸性,所以,權f(x)或者為先減後增,或者為先增後減。

當二階導數大於0,說明一階導數單調遞增。根據f(x)不是先減後增就是先增後減,所以,在此情況下,f(x)只能為先減後增了。所以,在二階導數大於0時,函式為凹函式。

同理可證二階導數小於0時,函式為凸函式。

僅為個人理解哦!不負責任的哦!

利用二階導數求函式凹凸性

13樓:匿名使用者

本身用拉格朗日時,是隻有一個h,

這裡是因為原式中還有一個h,

見問號所在行的上數第二行末,

所以左邊和右邊就多出了一個h。

二階導數判斷凹凸性二階導數怎麼判斷凹凸

設f x 在 a,b 上連續,在 a,b 內具有一階和二階導數,那麼,1 若在 a,b 內f x 0,則f x 在 a,b 上的圖形是凹的 2 若在 a,b 內f x 0,則f x 在 a,b 上的圖形是凸的。判斷函式極大值以及極小值 結合一階 二階導數可以求函式的極值。當一階導數等於0,而二階導數...

二次函式的二階導數是常數,怎麼利用二階導數求極值

不需要用二階導數來求 只需要用一階的來就可以了 二階導數是常數說明了就是球的是對的 不能說明其他的問題 二次函式的二階導數肯定是常數 求極值是利用一階導數,而利用二階導數判斷其為極小值或極大值.y ax 2 bx c y ax b,由y 0得極值點x b 2a y a,若a 0,則y 0,此為極小值...

二階導數小於零是凹函式還是凸函式

呵呵,提示兩個bai思路 du 1.導數的應用是判斷曲zhi線的斜率,這個你肯定dao知道,那麼二階導數說白版 了不就是權為了判斷一階導數的斜率,一階導數大於零說明函式值一直在增加,那麼二階大於零說明什麼?依此可知,三階導數說明什麼?2.簡單點,你畫個開口朝上的函式,比如f x x 2 再畫個開口向...