高中數學導數計算,求高中數學導數公式

2021-03-04 04:33:32 字數 5924 閱讀 2958

1樓:孤島二人

幾種常見函式的導數:

1.c′=0 (c為常數)

2.(x∧n)′=nx∧(n-1)

3.(sinx)′=cosx

4.(cosx)′=-sinx

5.(lnx)′=1/x

6.(e∧x)′=e∧x

函式的和·差·積·商的導內數:容

(u±v)′=u′±v′

(uv)′=u′v+uv′

(u/v)′=(u′v-uv′)/v²

複合函式的導數:

(f(g(x))′=(f(u))′(g(x))′. u=g(x)

2樓:匿名使用者

-1要拎出來的,x^a次求導a要乘出來,這裡的a是-1,所以應該-bx^-2

3樓:四魂洛神

你寫的公式記錯了,分子那是減

求高中數學導數公式

4樓:匿名使用者

高中數學導數公式具體為:

1、原函式:y=c(c為常數)

導數: y'=0

2、原函式:y=x^n

導數:y'=nx^(n-1)

3、原函式:y=tanx

導數: y'=1/cos^2x

4、原函式:y=cotx

導數:y'=-1/sin^2x

5、原函式:y=sinx

導數:y'=cosx

6、原函式:y=cosx

導數: y'=-sinx

7、原函式:y=a^x

導數:y'=a^xlna

8、原函式:y=e^x

導數: y'=e^x

9、原函式:y=logax

導數:y'=logae/x

10、原函式:y=lnx

導數:y'=1/x

5樓:匿名使用者

幾種常見函式的導數:

1.c′=0 (c為常數)

2.(x∧n)′=nx∧(n-1)

3.(sinx)′=cosx

4.(cosx)′=-sinx

5.(lnx)′=1/x

6.(e∧x)′=e∧x

函式的和·差·積·商的導數:

(u±v)′=u′±v′

(uv)′=u′v+uv′

(u/v)′=(u′v-uv′)/v²

複合函式的導數:

(f(g(x))′=(f(u))′(g(x))′. u=g(x)

6樓:匿名使用者

在湘教版高中數學2-2就有了,基本初等函式導數公式主要有以下

y=f(x)=c (c為常數),則f'(x)=0

f(x)=x^n (n不等於0) f'(x)=nx^(n-1) (x^n表示x的n次方)

f(x)=sinx f'(x)=cosx

f(x)=cosx f'(x)=-sinx

f(x)=a^x f'(x)=a^xlna(a>0且a不等於1,x>0)

f(x)=e^x f'(x)=e^x

f(x)=logax f'(x)=1/xlna (a>0且a不等於1,x>0)

f(x)=lnx f'(x)=1/x (x>0)

f(x)=tanx f'(x)=1/cos^2 x

f(x)=cotx f'(x)=- 1/sin^2 x

導數運演算法則如下

(f(x)+/-g(x))'=f'(x)+/- g'(x)

(f(x)g(x))'=f'(x)g(x)+f(x)g'(x)

(g(x)/f(x))'=(f(x)'g(x)-g(x)f'(x))/(f(x))^2

7樓:出津鮑逸美

^u*v=u'v+uv';u+v=u'+v';u/v=u'v-uv'/v^2;常數導數等於0,sinx'=cosx,lnx'=1/x,x^a=ax^a-1,cosx'=-sinx,e^x=e^x,logax=1/xloga,a^x=a^xloga,

8樓:從珧承良弼

^函式導數公式

這裡將列舉幾個基本的函式的導數以及它們的推導過程:

1.y=c(c為常數)

y'=0

2.y=x^n

y'=nx^(n-1)

3.y=a^x

y'=a^xlna

y=e^x

y'=e^x

4.y=logax

y'=logae/x

y=lnx

y'=1/x

5.y=sinx

y'=cosx

6.y=cosx

y'=-sinx

7.y=tanx

y'=1/cos^2x

8.y=cotx

y'=-1/sin^2x

9.y=arcsinx

y'=1/√1-x^2

10.y=arccosx

y'=-1/√1-x^2

11.y=arctanx

y'=1/1+x^2

12.y=arccotx

y'=-1/1+x^2

在推導的過程中有這幾個常見的公式需要用到:

中g(x)看作整個變數,而g'(x)中把x看作變數』

2.y=u/v,y'=(u'v-uv')/v^2

3.y=f(x)的反函式是x=g(y),則有y'=1/x'

證:1.顯而易見,y=c是一條平行於x軸的直線,所以處處的切線都是平行於x的,故斜率為0。

用導數的定義做也是一樣的:y=c,⊿y=c-c=0,lim⊿x→0⊿y/⊿x=0。

2.這個的推導暫且不證,因為如果根據導數的定義來推導的話就不能推廣到n為任意實數的一般情況。在得到

y=e^x

y'=e^x和y=lnx

y'=1/x這兩個結果後能用複合函式的求導給予證明。

3.y=a^x,

⊿y=a^(x+⊿x)-a^x=a^x(a^⊿x-1)

⊿y/⊿x=a^x(a^⊿x-1)/⊿x

如果直接令⊿x→0,是不能匯出導函式的,必須設一個輔助的函式β=a^⊿x-1通過換元進行計算。由設的輔助函式可以知道:⊿x=loga(1+β)。

所以(a^⊿x-1)/⊿x=β/loga(1+β)=1/loga(1+β)^1/β

顯然,當⊿x→0時,β也是趨向於0的。而limβ→0(1+β)^1/β=e,所以limβ→01/loga(1+β)^1/β=1/logae=lna。

把這個結果代入lim⊿x→0⊿y/⊿x=lim⊿x→0a^x(a^⊿x-1)/⊿x後得到lim⊿x→0⊿y/⊿x=a^xlna。

可以知道,當a=e時有y=e^x

y'=e^x。

4.y=logax

⊿y=loga(x+⊿x)-logax=loga(x+⊿x)/x=loga[(1+⊿x/x)^x]/x

⊿y/⊿x=loga[(1+⊿x/x)^(x/⊿x)]/x

因為當⊿x→0時,⊿x/x趨向於0而x/⊿x趨向於∞,所以lim⊿x→0loga(1+⊿x/x)^(x/⊿x)=logae,所以有

lim⊿x→0⊿y/⊿x=logae/x。

可以知道,當a=e時有y=lnx

y'=1/x。

這時可以進行y=x^n

y'=nx^(n-1)的推導了。因為y=x^n,所以y=e^ln(x^n)=e^nlnx,

所以

5.y=sinx

⊿y=sin(x+⊿x)-sinx=2cos(x+⊿x/2)sin(⊿x/2)

⊿y/⊿x=2cos(x+⊿x/2)sin(⊿x/2)/⊿x=cos(x+⊿x/2)sin(⊿x/2)/(⊿x/2)

所以

6.類似地,可以匯出y=cosx

y'=-sinx。

7.y=tanx=sinx/cosx

y'=[(sinx)'cosx-sinx(cos)']/cos^2x=(cos^2x+sin^2x)/cos^2x=1/cos^2x

8.y=cotx=cosx/sinx

y'=[(cosx)'sinx-cosx(sinx)']/sin^2x=-1/sin^2x

9.y=arcsinx

x=siny

x'=cosy

y'=1/x'=1/cosy=1/√1-sin^2y=1/√1-x^2

10.y=arccosx

x=cosy

x'=-siny

y'=1/x'=-1/siny=-1/√1-cos^2y=-1/√1-x^2

11.y=arctanx

x=tany

x'=1/cos^2y

y'=1/x'=cos^2y=1/sec^2y=1/1+tan^2x=1/1+x^2

12.y=arccotx

x=coty

x'=-1/sin^2y

y'=1/x'=-sin^2y=-1/csc^2y=-1/1+cot^2y=-1/1+x^2

另外在對雙曲函式shx,chx,thx等以及反雙曲函式arshx,archx,arthx等和其他較複雜的複合函式求導時通過查閱導數表和運用開頭的公式與

4.y=u土v,y'=u'土v'

5.y=uv,y=u'v+uv'

均能較快捷地求得結果。

參考資料:

9樓:輝藏愚霜

規模突我才發現瞭解到

10樓:綦映任慧穎

常用導數公式

1.y=c(c為常數)

y'=0

2.y=x^n

y'=nx^(n-1)

3.y=a^x

y'=a^xlna

y=e^x

y'=e^x

4.y=logax

y'=﹙logae﹚/x

y=lnx

y'=1/x

5.y=sinx

y'=cosx

6.y=cosx

y'=-sinx

高中數學 導數 計算 詳解 20題

11樓:高中數學

1、a=0時,函式

bai為奇函式;a≠

du0時,函式為非奇非偶zhi函式;

根據函式的奇偶dao性來判斷的。定義域為

內(-∞,0)∪(0,+∞).f(-x)=ax^2+4/x, f(x)=ax^2-4/x

當容a=0時,f(-x)=-f(x);當a≠0時,f(-x)與f(x)不相等,也不相反;

2、f(x)在(1/2,1)上單調增。

理由如下:

f'(x)=2ax+4/x^2

因-20

所以f(x)在(1/2,1)上單調增。

也可以利用函式的單調性的定義來解決這類問題。

步驟:1.任取兩數;2.做差變形;3.判斷符號;4.得出結論。

12樓:ゞ飄

a=0時,函bai數du為奇zhi

函式;a≠0時,函式為非奇非偶函式

根據函式的奇dao偶性來判斷的內。定義域為(-∞容,0)∪(0,+∞).f(-x)=ax^2+4/x, f(x)=ax^2-4/x

當a=0時,f(-x)=-f(x);當a≠0時,f(-x)與f(x)不相等,也不相反

f'(x)=2ax+4/x^2

因-20

所以f(x)在(1/2,1)上單調增

高中數學導數

lim x 0 f x0 3 x f x0 3 x 其實還是求函式在x0處的導數 換下元可能更清楚 令3 x t,x 0時,t 0,則lim x 0 f x0 3 x f x0 3 x 即為 lim t 0 f x0 t f x0 x f x0 後面一種理解是錯誤的。lim x 0 f x0 3 x...

高中數學導數如何學習高中數學導數在必修幾?是哪一章?

一 高階導 數的求法 1 直接法 由高階導數的定義逐步求高階導數。一般用來尋找解題方法。2 高階導數的運演算法則 二項式定理 3 間接法 利用已知的高階導數公式,通過四則運算,變數代換等方法。注意 代換後函式要便於求,儘量靠攏已知公式求出階導數。二 口訣 為了便於記憶,有人整理出了以下口訣 常為零,...

請教高中數學導數問題急高中數學導數零點問題

1.你先得明白,一個函式的導函式反映的是被求導函式影象的遞增遞減關係的。所以,在求函式的極值時,先求它的導函式,再令導函式等於0,得到幾個點 此時不能確定就是極值點 再看求得的點的左右導函式的正負,如果左右異號,則該點是極值點。再回到你說的問題,一 個三次函式有2個極值點,那麼從我上面說的,可以推出...