高等數學數學重要極限,無窮大能用嗎?如圖

2021-03-04 04:36:34 字數 1245 閱讀 1104

1樓:qjxin在路上

重要極限的x可以趨於0,也可以趨於無窮大,這要看你怎麼寫這個表示式了,如果公式是趨於零的,你可以換元,換成1/t,此時t趨於無窮大,就好了,懂把

2樓:古道舊景

當然不能,當x無窮大時,sinx總是小於等於1的,一個常數除以無窮大極限是0

3樓:顯示卡色彩校正器

不行。因為sinx的範圍僅限於-1到1,分母x趨於無窮的時候,易得出下面的極限值為0.

sinx在無窮大處極限不存在。

4樓:djl丶魑魅魍魎

上面的是一 不過下面的應該是0吧?

高等數學二中關於重要極限1的∞次方的定義是x趨向於無窮大,為何本題中是x趨向於0也可以用?題目見附

5樓:睜開眼等你

只要符合1的∞都是重要極限,你可以利用換元把趨於0換成趨於∞

高數三的兩個重要極限是什麼?

6樓:匿名使用者

兩個重要極限:

一、x趨近於0時,sinx/x的極限為1 。

二、n趨近於無窮大時,(1+1/n)的n次方的極限為e。

7樓:匿名使用者

第一個重要極限和第二個重要極限公式是:

數學中的「極限」指:某一個函式中的某一個變數,此變數在變大(或者變小)的永遠變化的過程中,逐漸向某一個確定的數值a不斷地逼近而「永遠不能夠重合到a」(「永遠不能夠等於a,但是取等於a『已經足夠取得高精度計算結果)的過程中,此變數的變化,被人為規定為「永遠靠近而不停止」、其有一個「不斷地極為靠近a點的趨勢」。

擴充套件資料:

極限的思想方法貫穿於數學分析課程的始終。可以說數學分析中的幾乎所有的概念都離不開極限。在幾乎所有的數學分析著作中,都是先介紹函式理論和極限的思想方法,然後利用極限的思想方法給出連續函式、導數、定積分、級數的斂散性、多元函式的偏導數,廣義積分的斂散性、重積分和曲線積分與曲面積分的概念。

如:(1)函式在 點連續的定義,是當自變數的增量趨於零時,函式值的增量趨於零的極限。

(2)函式在 點導數的定義,是函式值的增量 與自變數的增量 之比 ,當 時的極限。

(3)函式在 點上的定積分的定義,是當分割的細度趨於零時,積分和式的極限。

(4)數項級數的斂散性是用部分和數列 的極限來定義的。

(5)廣義積分是定積分其中 為,任意大於 的實數當 時的極限,等等。

高等數學無窮級數求和問題,高等數學無窮級數求和

裡面看成一個幾何級數。所以就是首項 1 公比 高等數學 無窮級數 求和 提出分母1 3,剩下的是2 3的等比數列,求和.其中1 2 3 n 在n 趨於無窮時為1.這樣等比數列求和公式只剩 2 3 1 3 2 再乘提出的1 3 即為2 3.我見過 是斜的 還第一次看見是顛倒的 我服 關於高等數學中求無...

高等數學極限問題啊。。高等數學 極限問題?

極限號就只寫lim了。這題要分情況討論。2 x 2 1,2 x 1 lim 1 x n x 2 2 n 1 n lim 2 x 2 n 2 x n 1 1 n x 2 2 limx 2 2 因為1 2 x 2 n 2 x n 1 1 n 2 x 2 n 2 x n 1,最後的表示式的極限是1 x 2...

高等數學無窮級數求和題,高等數學,無窮級數,求和函式

先積後導要加一個含x的量,並且能儘可能化簡原式並且極限是1,加上的這個可以求導時可以約掉2n 1,這樣分子就剩x的指數函式了,否則是個複合函式。這就要求你對級數的形式很敏感才行了,其實思路 於泰勒式,就是函式可以用一個多項式表示 高等數學,無窮級數,求和函式 你直接積分根本沒法去掉前面係數啊,首先要...