高等數學函式高數常見函式求導公式

2021-03-07 01:39:34 字數 6805 閱讀 3674

1樓:匿名使用者

導函式與原函式增減性的關係:導函式為正的區間,該區間原函式單調遞增,導函式為負的區間,該區間原函式單調遞減。導函式的零點,有可能是原函式的極值點(零點左右導函式值有正負變換的,則是,否則不是如y=x³,x=0不是極值點)

|sinx|≤1→1-sinx≥0→原函式沒有單調遞減的區間→原函式為增函式;

6x²+4≥4>0→原函式沒有單調遞減的區間→原函式為增函式;

ln3>ln1=0,3^-x>0→-ln3·3^-x<0 →原函式沒有單調遞增的區間→原函式為減函式

sec²x≥1>0→原函式在可導區間為增函式。

2樓:戴晚竹尚胭

我們已知

(1)f(x)

+f(1-1/x)

=2x,

接下來,用1-1/x代替x寫入(1)式,可知(2)f(1-1/x)

+f(1/(1-x))

=2(1-1/x),

然後,用1/(1-x)代替x寫入(1)式,我們有(3)f(1/(1-x))

+f(x)

=2(1/(1-x)),

通過觀察,我們知道(1)(2)(3)等式左邊的f(x)、f(1-1/x)、f(1/(1-x))各出現了2次,所以,把這三個等式左右各自疊加起來我們有

2*[f(x)

+f(1-1/x)

+f(1/(1-x))]

=2*[x

+(1-1/x)

+(1/(1-x))]

所以有,

(4)f(x)

+f(1-1/x)

+f(1/(1-x))=x

+(1-1/x)

+(1/(1-x))

利用(4)減去(2),我們立即可以得到

f(x)=x

-(1-1/x)

+(1/(1-x))

=x-1

+1/x

+1/(1-x)

高數常見函式求導公式

3樓:我是一個麻瓜啊

高數常見函式求導公式如下圖:

求導是數學計算中的一個計算方法,它的定義就是,當自變數的增量趨於零時,因變數的增量與自變數的增量之商的極限。

在一個函式存在導數時,稱這個函式可導或者可微分。可導的函式一定連續。不連續的函式一定不可導。

4樓:

這是同濟第5版高數上的,與6版應該一樣吧

5樓:匿名使用者

同濟的我沒有,我有以下幾個,不知道你用著怎麼樣,試試吧,根號打不出來,自己廢下心拼下吧,嘻嘻

1.(c)`=0 (c為常數)2.(x^a)`=ax^(a-1) (a∈r) 3.(a^x)`=a^(x)lna (a≠1且a>0)

4.(e^x)`=e^x 5.(㏒a(x))`=1/(xlna) (a≠1且a>0) 6.(lnx)`=1/x

7.(sinx)`=cosx 8.(cosx)`= -sinx 9.

(tanx)`=1/cos^2x=sec^2x

10.(cotx)`= -1/sin^2x= -csc^2x 11.(secx)`=sectanx 12.(cscx)`= -csccotx

13.(arcsinx)`=1/((1-x^2)^1/2) 14.(arccosx)`= -1/((1-x^2)^1/2)

15.(arctanx)`=1/(1+x^2) 16.(arccotx)`= -1/(1+x^2)

6樓:匿名使用者

^1.(c)`=0 (c為常數)2.(x^a)`=ax^(a-1) (a∈r) 3.(a^x)`=a^(x)lna (a≠1且a>0)

4.(e^x)`=e^x 5.(㏒a(x))`=1/(xlna) (a≠1且a>0) 6.(lnx)`=1/x

7.(sinx)`=cosx 8.(cosx)`= -sinx 9.

(tanx)`=1/cos^2x=sec^2x

10.(cotx)`= -1/sin^2x= -csc^2x 11.(secx)`=sectanx 12.(cscx)`= -csccotx

13.(arcsinx)`=1/((1-x^2)^1/2) 14.(arccosx)`= -1/((1-x^2)^1/2)

15.(arctanx)`=1/(1+x^2) 16.(arccotx)`= -1/(1+x^2)

7樓:星辰

高等數學常見函式導公式高等數學使皮鞋難學對美學克但是它的實用價值和科學價值很高

高等數學包括哪些內容

8樓:夜璇宸

主要內容包括:數列、極限、微積分、空間解析幾何與線性代數、級數、常微分方程。是工科、理科、財經類研究生考試的基礎科目。

指相對於初等數學而言,數學的物件及方法較為繁雜的一部分。

廣義地說,初等數學之外的數學都是高等數學,也有將中學較深入的代數、幾何以及簡單的集合論初步、邏輯初步稱為中等數學的,將其作為中小學階段的初等數學與大學階段的高等數學的過渡。

通常認為,高等數學是由微積分學,較深入的代數學、幾何學以及它們之間的交叉內容所形成的一門基礎學科。

擴充套件資料

初級數學的基本內容

一、小學

整數、分數和小學的四則運算、數與代數、空間與圖形、簡單統計與可能性、一元一次方程,圓,正負數,立體幾何初步。

二、初中

代數部分:  有理數(正數和負數及其運算),實數(根式的運算),平面直角座標系,基本函式(一次函式,二次函式,反比例函式),簡單統計,銳角三角函式,方程、(一元一次方程,二元一次方程組,一元二次方程,三元一次方程組),因式分解、整式、分式、一元一次不等式。

幾何部分:全等三角形,四邊形(重點是平行四邊形及特殊的平行四邊形),對稱與旋轉,相似圖形(重點是相似三角形),圓的基本性質,

三、高中

集合,基本初等函式(指數函式、對數函式,冪函式,高次函式),二次函式根分佈與不等式,柯西不等式,排列不等式,初等行列式,三角函式,解析幾何與圓錐曲線(橢圓,拋物線,雙曲線),複數,數列,高等統計與概率,排列組合,平面向量,空間向量,空間直角座標系,導數以及相對簡單的定積分。

9樓:匿名使用者

內容包含:

一、 函式與極限

二、導數與微分

三、導數的應用

四、不定積分

五、定積分及其應用

六、空間解析幾何

七、多元函式的微分學

八、多元函式積分學

九、常微分方程

十、無窮級數

主要包括的科目有:微積分,數理統計等。

其實,高中就有涉及,高數只是深化了一些。

10樓:匿名使用者

1. 2023年數學考試大綱的修訂說明與評述

(1) 基於工學、經濟學、管理學門類各學科專業對碩士研究生入學所應具備的數學知識和能力的不同要求,數學統考試卷仍分為數學

一、數學

二、數學三和數學四。

(2) 數學

一、二試卷高等數學部分,「函式、極限、連續」的考試要求的第4條增加「瞭解初等函式的概念」的要求。

原為「掌握基本初等函式的性質及其圖形」。變為「掌握基本初等函式的性質及其圖形,瞭解初等函式的概念」。

評述:進一步強調基礎知識點。

(3)數學一試卷高等數學部分,「多元函式微分學」的考試要求的第6條,數學二試卷高等數學部分,「多元函式微積分學」的考試要求的第3條,將原來的「會用隱函式的求志法則」改為「瞭解隱函式存在定理,會求多元隱函式的偏導數」。

評述:進一步強調基礎知識點與概念理解的重要性。

(4) 數學

三、四試卷高等數學部分,「函式、極限、連續」的考試要求的第3條,將「理解反函式、隱函式的概念」改為「瞭解反函式、隱函式的概念」,

原為「理解複合函式、反函式、隱函式和分段函式的概念」。變為「理解複合函式及分段函式的概念,瞭解反函式及隱函式的概念」。

評述:進一步強調基礎知識點。

「一元函式微分學」的考試要求的第1條,增加「會求平面曲線的切線方程和法線方程」的要求。

原為「理解導數的概念及可導性與連續性之間的關係,瞭解導數的幾何意義與經濟意義(含邊際與彈性的概念)」。

變為「理解導數的概念及可導性與連續性之間的關係,瞭解導數的幾何意義與經濟意義(含邊際與彈性的概念),會求平面曲線的切線方程和法線方程。」

評述:進一步強調基礎知識點,進一步提升對考生能力的要求。

(5)數學三、四試卷線性代數部分,「線性方程組」的考試要求的第4條改為「4.理解非齊次線性方程組解的結構及通解的概念。5.掌握用初等行變換求解線性方程組的方法」。

原為「4.掌握理解非齊次線性方程組基礎解系的求法,會用其特解及相應的匯出組的基礎解系表示非齊次線性方程組的通解」。變為以上的兩條。

評述:進一步提升對考生能力的要求。

(6) 對數學

一、三試卷概率論與數理統計部分和數學四試卷概率論部分的一些概念、考試內容和考試要求在文字表述上作了修改,使其更加規範和統一。

(7) 對數學

一、二試卷的樣捲進行了修訂。

(8)對數學一、

二、三、四試卷中的考試內容和考試要求的表述更進一步明確、規範和統一,在考試內容部分只列出內容範圍,而將有關內容的要求層次和應用這些內容可以解出的問題在考試要求部分列出。

2.2023年考研數學特點

2005考研數學試卷將進一步加大對考生掌握數學基礎知識的準確性與全面性的考察力度,同時堅固不同知識點綜合交叉運用性的基本能力。就難度而言,會維持2023年的水平。

2023年數學試題是近5年以來較容易也是最基本的一套試題。

2023年大綱維持2023年要求基本不變。只是進一步加強了對基礎性知識點的重視與規範化要求。如:

一元微分學中:增加了「接初等函式的概念準確的概念」,「會求平面曲線的切線方程與法線方程」,多元微分學強調了「瞭解隱函式存在定理,會求多元隱函式的偏導數」,線性代數強調「理解非齊次方程組解的結構及通解的概念」,「掌握用初等行變換求解線性方程組的方法」,等等。準確而全面的概念理解與過硬的基本計算能力,將是2023年考生取勝的關鍵。

加強知識的基礎性、系統綜合性與交叉性的訓練,努力提升對知識的洞察力,以不變應萬變,排除誤導,是我們的建議。

關於2005考研試題的特點與結構,有以下幾點:

(1)試卷分值問題

從2023年開始,教育部考試中心對數學試卷的分數設定為150分,這反映了國家對人才的數學素質與能力的重視,但是數學試卷的題目容量並未增加,而是每一題目的賦分值均有增加,比如選擇與填空題(共13個小題)由原來3分提為4分。對每一個考生來講,在數學上下的功夫,其價值提高了。2023年數學試卷的分值維持不變。

(2)試卷結構問題

2023年數學試卷

一、二、

三、四結構相同,均為23題。其中選擇與填空題約佔40%(共14小題56分),其餘為解答題。

試卷一:微積分約60%,代數約20%,概率統計約20%;

試卷二:微積分約80%(要求多元微積分學,到二重積分為止),

代數約20%(要求到特徵值與特徵向量為止);

試卷三:微積分約50%(不含曲線曲面積分與三重積分,以及場論),

代數約25%(要求到二次型為止,同試卷一),概率統計約25%;

試卷四:微積分約50%(不含曲線曲面積分與三重積分,以及場論),

代數約25%(要求到特徵值與特徵向量為止),概率論約25%(不含統計);

(3)2004閱卷基本情況

初步估計,北京地區平均70分左右,微積分,線性代數與概率統計題目相對都較基本,最低調檔限為90分以上。其中以概率統計題目答卷情況最好,微積分與線性代數答卷得分較往年有提高。

(4)考生的普遍基本狀況

普遍的基本狀況是:全國現行的大學本科數學與英語的教學水準與國家考研的實際要求相差甚遠。這一情況的原因不在於考生本身。

面對考研,數學考試的特點是全面考察學生對基礎知識點理解的準,我們的建議是:加強對基礎知識理解的準確性、全面性,完整性與系統性,提升對基本知識點交叉綜合運用的能力。為確保這樣的教學效果,清華考研輔導基礎班的數學輔導課,一般要保持120-160學時,正是這樣的基礎性班教學,才保證了廣大學員大幅度提升對數學知識的洞察力,以不變應萬變,在考場上取得技壓群雄的良好成績。

3.關於對基礎知識點理解的準確性、完整性與系統性

對基礎知識點的理解,首先要作到準確性,準確性沒有作到,一切都談不上。有了準確性,才能進一步有全面性。對基礎知識點理解的的準確與不準確,或不夠準確,會極大的影響考試成績。

而對準確性與全面性的問題,正是大多數考生的不足之處,需要認真補課。

完全基礎性題目一般佔60分以上(滿分150分),並且,基礎性在綜合題目中也佔有重要的分量。所謂基礎知識,包括初等函式的初等性質,構造導數定義的極限模式及其變形,極限存在的命題形式及命題屬性(充分的?必要的?

還是充要的?),極限運演算法則,反函式與隱函式的概念與性質,線性微分方程解的概念,一階線性微分方程解的公式,齊次與非齊次線性微分方程解的結構,矩陣的初等變換與秩的概念,向量組的線性相關與無關,向量組的秩與線性方程組解結構之間的關係,矩陣的行初等變換與求解非齊次線性方程組解的關係,概率的事件運算,五個古典概率的基本公式,分佈率,分佈密度與分佈函式的性質及其相互之間關係,數字特徵的定義與基本運算公式,簡單隨機樣本及其數字特徵,等等。

基礎性知識的失誤往往導致對一個綜合題目的切入點錯誤,最後造成的是全域性性錯誤。同時還應注意基本概念的背景和各個知識點的相互關係,不宜多作難題。對基本題目涉及的方法與技巧多做總結與分析,力爭做到舉一反三,以一當十,這樣的訓練會使你遇到個別難題時容易找到切入點與思路。

高等數學是高等函式嗎,高等數學函式?

數學和函式根本是不同的概念。函式是數學中的研究物件,不同階段的數學研究函式的方法不同。高等數學主要研究函式的分析性質。所以說二者的概念不在一個層面上。沒有聽說過 高等函式 這種課程 高等數學以研究極限為主的數學內容。高等數學主要是以微積分為基礎的,主要內容包括 數列 極限 微積分 空間解析幾何與線性...

高數函式的連續性,高等數學,函式的連續性

一類間斷點 復,就是函式無定義的 制孤點,但是緊靠該點兩側,函式值 極限 相同 其他間斷點,是函式無定義的孤點,緊靠該點兩側,函式值 極限 不同。1 分式,分母為0的點,就是間斷點。y x 1 x 1 x 1 x 2 x 1,x 2是間斷點,但是,如果x 1,x 1可以約去,y x 1 x 2 只要...

高等數學函式極限的證明方法,高等數學函式極限的證明方法

過來人的意見 絲毫無用 考研數學包含3門課 高數,線性代數,概率論。你現在看到內的只是高數容的入門知識,可謂考研數學的冰山一角,題目根本不會涉及,如果考研出大題證明書上一個定理,那可謂是出卷中的極大失敗。考研數學主要考察定理的應用,本生證明不用太糾結。高等數學,用函式極限的定義證明。於 1 令f x...