1樓:肥書意邗彩
對x的偏
導是在某一固定y0截面與曲面交線的斜率,二階混合偏導可以這樣理解,就講一種先導x再導y的吧,導x以後幾何意義在開頭已經說了。那麼導y的幾何意義就是說在針對最初的固定y方向曲線的斜率求偏導。思維轉換下,把之前對x的偏導作為原函式,它的點x.
y得到的函式值是針對x方向的初始函式的斜率
(對,就是說它可以求曲面上任意一點的x方向的斜率)那麼再對y方向的偏導的意義就是在某個固定y值方向的每一點x方向斜率的斜率,也就是該點x方向斜率的變化快慢。同理,先導y再導x的意義就是某固定x方向對y方向斜率的增長速率。至於混合二階偏導在定義域內連續就相等的意思,我認為就是說在任意連續點上,它y方向的斜率的x方向的斜率與x方向斜率的y方向的斜率相等。
具體為何我也沒想清楚,應該與條件中的連續有關
2樓:banana一
扯犢子吧,相等的條件是二階偏導數連續
3樓:斜月三星
二階混合偏導連續 --> 混合偏導相等,這個一定是正確的,但是條件可以更弱一點,即:
一階可微 <--> 二階混合偏導相等,我認為是正確的,原因是:格林公式以及積分與路徑無關的條件。
可能有點問題:關於這個 <--> 符號,我覺得可能未必是充要條件,畢竟多元函式裡沒有多少充要條件。
4樓:末沫陌歿
最佳答案第一種方法是錯的,分子兩個x不是同一個
5樓:晨晨哈哈噠
法一寫錯了吧,求導順序寫倒了吧
6樓:yu看了
『由於看到沒有具體的證明過程,故此與大家分享一下,並校正一下樓上有所紕漏的說法』
〔補充〕
二元初等函式的二階混合偏導數一定連續且相等嗎?
7樓:匿名使用者
1、因為初定函式在定義域內連續 且二元初等函式的偏導數仍為初等函式 所以二元初等函式的二階偏導數也是初等函式 其在定義域內連續 :這是對的。
2、又因二階偏導連續 則與求偏導的先後次序無關知 兩個二階混合偏導應當相等 :
這也是對的。高數課本有這個定理的。
3、如果是分段函式,分段函式整體不是初等函式。上邊結論不一定成立。
8樓:匿名使用者
對多元初等函式來說,是這樣的。
9樓:匿名使用者
對但是數學分析裡不會特別在意初等函式,連續與可微性更重要。
定理的理解與應用挺好
二元初等函式的二階混合偏導數一定連續?兩者一定相等?
10樓:匿名使用者
1、不是二階混合導數一定連續,而是在二階混合導數存在情況下一定相等;
2、下圖分別提供了兩種不同的證明方法。
誰給個例子:二元函式二階混合偏導數相等
11樓:江淮一楠
^下面例子供你參考:
f(x,y)=x^3y^3sin(1/(xy)),xy≠0.
f(x,y)=0,xy=0.
1.xy=0,顯然
有fx'(x,y)=fy'(x,y)=0.
2.xy≠0,
fx'(x,y)=3x^2y^3sin(1/(xy))-xy^2cos(1/(xy)),
fy'(x,y)=3x^3y^2sin(1/(xy))-x^2ycos(1/(xy)).
3.xy=0,顯然有
fxy''(x,y)=fyx''(x,y)=0.
4.xy≠0,
fxy''(x,y)=fyx''(x,y)==9x^2y^2sin(1/(xy))-5xycos(1/(xy))-sin(1/(xy)).
==>在r^2上,f(x,y)的二階混合偏回導數相等答,
但是二階混合偏導數不連續.
兩個偏導數都連續是兩個混合偏導數相等的什麼條件
12樓:安潤革盼翠
記得是因為不同順序的二階混合偏導數就是先後對x及y的增量求極限,二階混合偏導連續則兩個極限順序可以交換,所以相等。詳細證明較麻煩,有用的話可找本數學分析書看一下
13樓:風丁慶旭
充分條件不必要條件
兩個偏導數都連續則兩個混合偏導數相等,這是定理
但兩個混合偏導數相等推不出兩個偏導數都連續
14樓:神遊飛天
兩個混合偏導數都連續是兩個混合偏導數相等的充分條件
二階混合偏導數在連續的情況下與求偏導次序無關 可是不求出來我怎麼去判斷連續不連續呢
15樓:匿名使用者
答:1、利用初等
函式性質啊。基本的初等函式都是連續、可導的;特殊的分段函式或者超越函式等,需要特殊情況特殊判斷;
2、比這個弱化的條件是有的:函式在領域u(ρ0,δ0)記憶體在,且二階偏導數存在,當函式在點(x0,y0)處有窮極限時,即:lim(x→x0,y→y0) f(x,y) = a ,a是常數,二階混合偏導相等。
16樓:獨吟獨賞獨步
是呀,所以你求出來一個看一看,連續的話另一個就不用求了
求二階混合偏導數怎樣求
17樓:陽依白原元
不一定駐點既是對x,y的一階偏導數等於0的點在該點是否取得極值由ac-b^2的正負給出,a=fxx,b=fxy,c=fyy。
18樓:郭敦顒
郭敦榮回答:
二元函式z=f(x,y)的二階偏導數共有四種情況:
(1)∂z²/∂x²=[∂(∂z/∂x)]/ ∂x;
(2)∂z²/∂y ²=[∂(∂z/∂y)]/ ∂y;
(3)∂z²/(∂y ∂x) =[∂(∂z/∂y)]/ ∂x,;
(4)∂z²/(∂x∂y) =[∂(∂z/∂x)]/ ∂y
其中,∂z²/(∂y∂x),∂z²/(∂x∂y)稱為函式對x,y的二階混合偏導數,其求法上面已給出了基本公式,下面舉例說明,
設二元函式z=sin(x/y),求∂z²/(∂y∂x),∂z²/(∂x∂y),
解∵∂z/∂x=(1/y)cos(x/y),∂z/∂y=(-x/y²)cos(x/y),
∴∂z²/(∂y∂x) =[∂(∂z/∂y)]/ ∂x=(-1/y²)cos(x/y)+(x/y^3)sin(x/y)。
∂z²/(∂x∂y) =[∂(∂z/∂x)]/ ∂y=(-1/y²)cos(x/y)+(x/y^3)sin(x/y)。
19樓:柳絮迎風飄搖
x= abcxyz,y = abcyz,∂u/∂y = abcxz,∂u/∂z = abcxy。
不一定駐點既是對x,y的一階偏導數等於0的點在該點是否取得極值由ac-b^2的正負給出。
比如:∂²u/∂x∂y = abcz,∂²u/∂x∂z = abcy,∂²u/∂y∂z = abcx。
在數學中,一個多變數的函式的偏導數,就是它關於其中一個變數的導數而保持其他變數恆定(相對於全導數,在其中所有變數都允許變化)。偏導數在向量分析和微分幾何中是很有用的。
在一元函式中,導數就是函式的變化率。對於二元函式研究它的"變化率",由於自變數多了一個,情況就要複雜的多。
在 xoy 平面內,當動點由 p(x0,y0) 沿不同方向變化時,函式 f(x,y) 的變化快慢一般說來是不同的,因此就需要研究 f(x,y) 在 (x0,y0) 點處沿不同方向的變化率。
設有二元函式 z=f(x,y) ,點(x0,y0)是其定義域d 內一點。把 y 固定在 y0而讓 x 在 x0 有增量 △x ,相應地函式 z=f(x,y) 有增量(稱為對 x 的偏增量)△z=f(x0+△x,y0)-f(x0,y0)。
20樓:匿名使用者
u = abcxyz
∂u/∂x = abcyz
∂u/∂y = abcxz
∂u/∂z = abcxy
僅舉一例:
∂²u/∂x∂y = abcz
∂²u/∂x∂z = abcy
∂²u/∂y∂z = abcx
二階混合偏導數是怎麼計算的 我有圖大家說下 謝謝了
21樓:匿名使用者
u = abcxyz
∂u/∂x = abcyz
∂u/∂y = abcxz
∂u/∂z = abcxy
舉個例子:設z=f(x+y2,3x-2y),f具有二階連續偏導數,求az/ax,a2z/axay解:az/ax=f1+3f2a2z/axay=(f11*2y-2f12)+3(f21.
2y-2f22)如果f1是z對第一個中間變數u的偏導數az/au*au/ax,那麼f1... 設z=f(x+y2,3x-2y),f具有二階連續偏導數,求az/ax,a2z/axay
一個二元函式具有二階連續偏導數,進行變數替換後得到的新函式是否還具有二階連續偏導數
22樓:廣泛的
1、因為初定函來數在定義域內連續
源 且二元初等函式的偏導數仍為初等函式 所以二元初等函式的二階偏導數也是初等函式 其在定義域內連續 :這是對的。 2、又因二階偏導連續 則與求偏導的先後次序無關知 兩個二階混合偏導應當相等 :
這也是對的。高數課本有這個定理的。 3、如果是分段函式,分段函式整體不是初等函式。
上邊結論不一定成立。
求z sin xy 二階偏導數,求函式z sin xy 的二階偏導數
包括對x,y的二階偏導數 對xy的導數也算是。不好打,具體演算法就不寫了 一階偏導數z cos xy x y y x 二階偏導數 z sin xy x y y x 2 cos xy x y 2x y y x 求函式z sin xy 的二階偏導數 z sin xy 2 和z xln x y 的二階偏導...
這個二階混合偏導數怎麼求?要詳細過程
z x 3.y 4x 內2.y 容2 x 5 z x 3x 2.y 8xy 2 1 2z x 2 6xy 8y 2 z y x 3 8x 2.y 2z y 2 8x 2 2z y x 2z x y x z y x x 3 8x 2.y 3x 2 16xy 求二階混合偏導數,要詳細 不一定駐點既是對x...
高等數學,二階偏導數,高等數學,二階偏導數?
上一步中,2xycos xy 2 cos前面還有個y啊,對這個y求導,不就是2xcos xy 2 嗎。2xycos xy 2 先對第一個y求導就是2xcos xy 2 呀,對第二個y求導就是 x 2y 2xy sin xy 2 4x 2y 2sin xy 2 呀。這裡的 2表示平方的意思 高等數學二...