這個二階混合偏導數怎麼求?要詳細過程

2021-04-19 09:20:12 字數 3550 閱讀 2809

1樓:匿名使用者

^^^z=x^3.y+4x^內2.y^容2- x+5∂z/∂x = 3x^2.y +8xy^2-1

∂^2z/∂x^2 = 6xy +8y^2

∂z/∂y = x^3+8x^2.y

∂^2z/∂y^2 = 8x^2∂^2z/∂y∂x=∂^2z/∂x∂y =∂/∂x (∂z/∂y)

= ∂/∂x ( x^3+8x^2.y)

=3x^2 +16xy

求二階混合偏導數,要詳細

2樓:鮑超少騰駿

不一定駐點既是對x,y的一階偏導數等於0的點在該點是否取得極值由ac-b^2的正負給出,a=fxx,b=fxy,c=fyy。

到考研網**檢視回答詳情》

二階混合偏導數是怎麼計算的 我有圖大家說下 謝謝了

3樓:匿名使用者

u = abcxyz

∂u/∂x = abcyz

∂u/∂y = abcxz

∂u/∂z = abcxy

舉個例子:設z=f(x+y2,3x-2y),f具有二階連續偏導數,求az/ax,a2z/axay解:az/ax=f1+3f2a2z/axay=(f11*2y-2f12)+3(f21.

2y-2f22)如果f1是z對第一個中間變數u的偏導數az/au*au/ax,那麼f1...  設z=f(x+y2,3x-2y),f具有二階連續偏導數,求az/ax,a2z/axay

求這個二階偏導數,要具體過程

4樓:匿名使用者

z=x²arctan(y/x)+∫y/(1+y²/x²)dx-xy

=x²arctan(y/x)-xy+∫y-y³/(x²+y²)dx

=x²arctan(y/x)-y²arctan(x/y)+c

求函式的二階偏導數(要過程。)

5樓:探索瀚海

偏導數在數學中,一個多變數的函式的偏導數,就是它關於其中一個變數的導數而保持其他變數恆定(相對於全導數,在其中所有變數都允許變化)。偏導數在向量分析和微分幾何中是很有用的。

定義x方向的偏導

設有二元函式z=f(x,y),點(x0,y0)是其定義域d內一點.把y固定在y0而讓x在x0有增量△x,相應地函式z=f(x,y)有增量(稱為對x的偏增量)△z=f(x0+△x,y0)-f(x0,y0)。

如果△z與△x之比當△x→0時的極限存在,那麼此極限值稱為函式z=f(x,y)在(x0,y0)處對x的偏導數(partial derivative)。記作f'x(x0,y0)。

y方向的偏導

函式z=f(x,y)在(x0,y0)處對x的偏導數,實際上就是把y固定在y0看成常數後,一元函式z=f(x,y0)在x0處的導數

同樣,把x固定在x0,讓y有增量△y,如果極限存在那麼此極限稱為函式z=(x,y)在(x0,y0)處對y的偏導數。記作f'y(x0,y0)

求法當函式z=f(x,y)在(x0,y0)的兩個偏導數f'x(x0,y0)與f'y(x0,y0)都存在時,

我們稱f(x,y)在(x0,y0)處可導。如果函式f(x,y)在域d的每一點均可導,那麼稱函式f(x,y)在域d可導。

此時,對應於域d的每一點(x,y),必有一個對x(對y)的偏導數,因而在域d確定了一個新的二元函式,

稱為f(x,y)對x(對y)的偏導函式。簡稱偏導數。

6樓:

∂z/∂x=1/(1+x²/y²)* 1/y=y²/(y²+x²)*1/y=y/(y²+x²)

∂z/∂y=1/(1+x²/y²)*(-x/y²)=-x/(y²+x²)

∂²z/∂x²=-y/(y²+x²)²* 2x=-2xy/(y²+x²)²

∂²z/∂y²=x/(y²+x²)* 2y=2xy/(y²+x²)²

∂²z/∂x∂y=[y²+x²-y*2y]/(y²+x²)²=(x²-y²)/(y²+x²)²

求二階混合偏導數怎樣求

7樓:陽依白原元

不一定駐點既是對x,y的一階偏導數等於0的點在該點是否取得極值由ac-b^2的正負給出,a=fxx,b=fxy,c=fyy。

8樓:郭敦顒

郭敦榮回答:

二元函式z=f(x,y)的二階偏導數共有四種情況:

(1)∂z²/∂x²=[∂(∂z/∂x)]/ ∂x;

(2)∂z²/∂y ²=[∂(∂z/∂y)]/ ∂y;

(3)∂z²/(∂y ∂x) =[∂(∂z/∂y)]/ ∂x,;

(4)∂z²/(∂x∂y) =[∂(∂z/∂x)]/ ∂y

其中,∂z²/(∂y∂x),∂z²/(∂x∂y)稱為函式對x,y的二階混合偏導數,其求法上面已給出了基本公式,下面舉例說明,

設二元函式z=sin(x/y),求∂z²/(∂y∂x),∂z²/(∂x∂y),

解∵∂z/∂x=(1/y)cos(x/y),∂z/∂y=(-x/y²)cos(x/y),

∴∂z²/(∂y∂x) =[∂(∂z/∂y)]/ ∂x=(-1/y²)cos(x/y)+(x/y^3)sin(x/y)。

∂z²/(∂x∂y) =[∂(∂z/∂x)]/ ∂y=(-1/y²)cos(x/y)+(x/y^3)sin(x/y)。

9樓:柳絮迎風飄搖

x= abcxyz,y = abcyz,∂u/∂y = abcxz,∂u/∂z = abcxy。

不一定駐點既是對x,y的一階偏導數等於0的點在該點是否取得極值由ac-b^2的正負給出。

比如:∂²u/∂x∂y = abcz,∂²u/∂x∂z = abcy,∂²u/∂y∂z = abcx。

在數學中,一個多變數的函式的偏導數,就是它關於其中一個變數的導數而保持其他變數恆定(相對於全導數,在其中所有變數都允許變化)。偏導數在向量分析和微分幾何中是很有用的。

在一元函式中,導數就是函式的變化率。對於二元函式研究它的"變化率",由於自變數多了一個,情況就要複雜的多。

在 xoy 平面內,當動點由 p(x0,y0) 沿不同方向變化時,函式 f(x,y) 的變化快慢一般說來是不同的,因此就需要研究 f(x,y) 在 (x0,y0) 點處沿不同方向的變化率。

設有二元函式 z=f(x,y) ,點(x0,y0)是其定義域d 內一點。把 y 固定在 y0而讓 x 在 x0 有增量 △x ,相應地函式 z=f(x,y) 有增量(稱為對 x 的偏增量)△z=f(x0+△x,y0)-f(x0,y0)。

10樓:匿名使用者

u = abcxyz

∂u/∂x = abcyz

∂u/∂y = abcxz

∂u/∂z = abcxy

僅舉一例:

∂²u/∂x∂y = abcz

∂²u/∂x∂z = abcy

∂²u/∂y∂z = abcx

求二階偏導詳細過程

求z sin xy 二階偏導數,求函式z sin xy 的二階偏導數

包括對x,y的二階偏導數 對xy的導數也算是。不好打,具體演算法就不寫了 一階偏導數z cos xy x y y x 二階偏導數 z sin xy x y y x 2 cos xy x y 2x y y x 求函式z sin xy 的二階偏導數 z sin xy 2 和z xln x y 的二階偏導...

高等數學,二階偏導數,高等數學,二階偏導數?

上一步中,2xycos xy 2 cos前面還有個y啊,對這個y求導,不就是2xcos xy 2 嗎。2xycos xy 2 先對第一個y求導就是2xcos xy 2 呀,對第二個y求導就是 x 2y 2xy sin xy 2 4x 2y 2sin xy 2 呀。這裡的 2表示平方的意思 高等數學二...

二階導數判斷凹凸性二階導數怎麼判斷凹凸

設f x 在 a,b 上連續,在 a,b 內具有一階和二階導數,那麼,1 若在 a,b 內f x 0,則f x 在 a,b 上的圖形是凹的 2 若在 a,b 內f x 0,則f x 在 a,b 上的圖形是凸的。判斷函式極大值以及極小值 結合一階 二階導數可以求函式的極值。當一階導數等於0,而二階導數...