什麼是無理數,什麼是無理數及其定義是什麼

2022-03-27 17:54:57 字數 6854 閱讀 3824

1樓:成紅微生英飆

無理數:就是無限不迴圈小數。例如:圓周率π=3.141592653589793238……

2樓:康適祭秀筠

數學上的定義他們都說了,我就不再提了,我只說說我的理解,無理數,就是毫無規則的數字,比如:π,這就是一個無限不迴圈小數,毫無規律,但他就是一個數。

再比如:0.1001000100001000001.......這也是無理數。

3樓:彤縈浦俊德

就是不能表示成p/q的數(p,q為整數)

4樓:伯朵尚懷夢

無理數的定義:

無限不迴圈小數、不能完全平方數(√2、√3、)等......

5樓:羽怡乜曼文

說的通俗點好理解點,就是無規則的,無限的除不進的

6樓:滿楓麻雅豔

無限不迴圈小數,相對於有理數而言,比如圓周率等等。

7樓:匿名使用者

無理數有理數包括(整數,有限小數,無限迴圈小數)無理數指無限不迴圈小數

特別要注意的是無限迴圈小數 很多人常誤以為它屬於無理數等到了高中==

8樓:納翎家雲逸

無理數,即非有理數之實數,不能寫作兩整數之比。若將它寫成小數,它會是有無限位數、非迴圈的小數。常見的無理數有大部分的平方根、π和e(其中後兩者同時為超越數)等。

有理數包括(整數,有限小數,無限迴圈小數)無理數指無限不迴圈小數

特別要注意的是無限迴圈小數

很多人常誤以為它屬於無理數

9樓:雨聰

無限不迴圈小數叫做無理數,比如根號2

10樓:匿名使用者

不能表示成分數的數,也就是無限不迴圈小數

11樓:

無法用有限小數或無限迴圈小數表示的數

12樓:

無限不迴圈的數.像1.010010001...這樣的.

13樓:勞憐陽

無理數是指無限不迴圈小數

什麼是無理數及其定義是什麼

14樓:匿名使用者

有理數:有理數分為正有理數,負有理數,0。有理數都可以化為小數,其中整數可以看作小數點後面是零的小數,只要是無限迴圈小數的都叫有理數。

如:3.12121212121212……

無理數:無限不迴圈小數。無理數應滿足三個條件:①是小數;②是無限小數;③不迴圈.圓周率π=3.141592653……

複數:形如a+bi的數。式中a,b為實數,i是一個滿足i2=-1的數,因為任何實數的平方不等於-1,所以i不是實數,而是實數以外的新的數。

在複數a+bi中,a稱為複數的實部,b稱為複數的虛部,i稱為虛數單位。當虛部等於零時,這個複數就是實數;當虛部不等於零時,這個複數稱為虛數,虛數的實部如果等於零,則稱為純虛數。由上可知,複數集包含了實數集,因而是實數集的擴張。

實數:有理數和無理數統稱為實數

整數:整數包括正整數,負整數和0.

如正整數:1、2、3......

負整數:-1、-2、-3......

自然數:自然數,就是人們數數時產生的數(如「有3個蘋果」),所以用來表示物體個數的數叫做自然數。一個物體也沒有,當然可以用「0」來表示,所以「0」也是自然數。

15樓:君莫笑

小數點之後的數字有無限多個,並且不會迴圈

16樓:匿名使用者

無理數是用有理數來定義的

不是有理數的實數都叫無理數

有理數的定義是:能寫成兩個整數之比的數

.人們最初只認識自然數

後來學會分割就認識了分數

有了分數各種長度都可以很準確地丈量了

似乎計數系統已經完備了

.後來發現正方形的對角線無法表示成分數

圓周率也不是分數

於是就把這些另類的數叫無理數

實際上,後來發現無理數比有理數還要多呢

.分數很好理解,用兩個整數就可以確定

無理數不可思議,永遠無法寫出來

只能增加特殊符號來輔助描述:π,√2

什麼叫做無理數

17樓:匿名使用者

有理數----有理數的定義是:只要能以分數形式表現出來的數,就是有理數(當然必須限定是分母、分子都是整數,且分母不得為0)。所以整數、有限小數、迴圈小數、及分數都是有理數。

簡單的說,就是:可以用分數表示的數。

無理數----無理數的定義剛好和有理數相反。無理數就是無法以單純分數形式表示的數,例如無法開出的根號數(根號2、根號3...),或是某些特定的無限(不迴圈)小數,例如大家熟知的圓周率。

大家都知道著名的圓周率π=3.1415926……是個無限不迴圈的小數,可是大家知道像π這樣無限不迴圈的小數又叫無理數嗎?為什麼叫無理數呢?關於無理數的發現還有個帶有血腥味的故事呢。

公元前六世紀,古希臘有個數學權威叫畢達哥拉斯,他曾斷言:任何兩條線段相比,都可以用兩個整數之比來表示,由此推匯出,自然界只有整數和分數兩種數,不存在其他的數。但畢達哥拉斯這個結論提出不久,他的學生希伯斯就發現邊長為1的正方形,其對角線和邊長不能成為整數比,即既不是整數,又不是分數,而是一個當時人們還未認識的數。

希伯斯的發現觸犯了畢達哥拉斯的權威。於是,畢達哥拉斯就下令封鎖這個發現,不讓其傳播。可是,希伯斯的發現還是不脛而走,越來越多的人都知道了這一新數。

畢達哥拉斯大為惱怒,就下令追捕希伯斯,最後在一條船上找到希伯斯,竟殘忍地把希伯斯手腳捆住,扔進波濤洶湧的地中海。

希伯斯雖然葬身魚腹,冤沉大海,但他的發現卻為舉世公認。由於人們當時不能理解這種新數,但這種新數(如圓周率π)在自然界的確大量客觀存在,因而人們把這種數與已發現的整數、分數相比,將它取名為「無理數」,而將分數、整數稱為「有理數」。

18樓:四川吳彥祖丿

也叫無限不迴圈小數,小數點後有無數個數,比如10/3得到的數是3.3333333…

19樓:匿名使用者

不能用兩個整數的比的形式(即分數)表示的數叫做無理數。

20樓:微瀾

無限不迴圈小數叫做無理數

21樓:鋼廠飛丞

①帶π的數

②帶根號的開不盡方的

③無限不迴圈小數

什麼是無理數

22樓:裝甲擲彈兵水瓶

無理數,也稱為無限不迴圈小數,不能寫作兩整數之比。若將它寫成小數形式,小數點之後的數字有無限多個,並且不會迴圈。 常見的無理數有非完全平方數的平方根、π和e(其中後兩者均為超越數)等。

常見的無理數有:圓周長與其直徑的比值,尤拉數e,**比例φ等等。

可以看出,無理數在位置數字系統中表示(例如,以十進位制數字或任何其他自然基礎表示)不會終止,也不會重複,即不包含數字的子序列。

例如,數字π的十進位制表示從3.141592653589793開始,但沒有有限數字的數字可以精確地表示π,也不重複。必須終止或重複的有理數字的十進位制擴充套件的證據不同於終止或重複的十進位制擴充套件必須是有理數的證據,儘管基本而不冗長,但兩種證明都需要一些工作。

數學家通常不會把「終止或重複」作為有理數概念的定義。

23樓:匿名使用者

無理數,即非有理數之實數,不能寫作兩整數之比。若將它寫成小數,它會是有無限位數、非迴圈的小數。常見的無理數有大部分的平方根、π和e(其中後兩者同時為超越數)等。

有理數包括(整數,有限小數,無限迴圈小數)無理數指無限不迴圈小數

特別要注意的是無限迴圈小數 很多人常誤以為它屬於無理數等到了高中==

24樓:狂瑤宿雨

在求一個數的方根的過程中,我們發現許多數的方根都不是準確值,而是近似值.

另外,圓周率π=3.141592653……,又如:0.

1010010001…(兩個1之間依次多一個零).上述這些數都不是有限小數或無限迴圈小數,即都不是有理數,它們都是無限不迴圈小數.我們將,無限不迴圈小數,叫做無理數.

注意:(1)無理數應滿足三個條件:①是小數;②是無限小數;③不迴圈.(2)無理數不都是帶根號的數(例如π就是無理數),反之,帶根號的數也不一定都是無理數

25樓:仝秀花來緞

無理數是實數中不能精確地表示為兩個整數之比的數,即無限不迴圈小數。

如圓周率、2的平方根等。

無理數與有理數的區別:

1、把有理數和無理數都寫成小數形式時,有理數能寫成有限小數和無限迴圈小數,

比如4=4.0,

4/5=0.8,

1/3=0.33333……而無理數只能寫成無限不迴圈小數,比如√2=1.414213562…………根據這一點,人們把無理數定義為無限不迴圈小數.

2、所有的有理數都可以寫成兩個整數之比;而無理數不能。根據這一點,有人建議給無理數摘掉「無理」的帽子,把有理數改叫為「比數」,把無理數改叫為「非比數」。本來嘛,無理數並不是不講道理,只是人們最初對它不太瞭解罷了。

利用有理數和無理數的主要區別,可以證明√2是無理數。

【愛戀無極限

小葉子】為您解答,如果你滿意請「五星採納+五星好評」,謝謝!

26樓:利楊氏雙戊

π是無理數。無理數,即非有理數之實數,不能寫作兩整數之比。若將它寫成小數形式,小數點之後的數字有無限多個,並且不會迴圈。

常見的無理數有非完全平方數的平方根、π和e(其中後兩者同時為超越數)等。無理數的另一特徵是無限的連分數表示式。

如果我的回答對你有幫助

請記得給我好評

好嗎謝謝

27樓:匿名使用者

intermilanwang

說的對。無限但不迴圈小數。π、e還有部分有理數的根。

28樓:匿名使用者

沒有道理的數,哲學觀點是無序可查的數。哈哈!

29樓:悲傷並快樂

無限不迴圈小數,是實數中除去有理數的另一種

30樓:甲乙一丁

除了0和有理數之外的數

無理數是什麼意思??

31樓:羽毛和翅膀

無理數是實數中不能精確地表示為兩個整數之比的數,即無限不迴圈小數。 如圓周率、2的平方根等。

32樓:匿名使用者

所有不能寫完的數,且不能用分數表示

33樓:匿名使用者

無理數是無限不迴圈的小數,是跟有理數相對的,不能問具體有什麼意思

34樓:匿名使用者

無限不迴圈小數,比如1.212453460292.....

35樓:衛民性夢蘭

無理數,即非抄有理數之實bai數,不能寫作兩整數之比。若將它寫du成小數形式,小數點之後的zhi數字有無限多dao個,並且不會迴圈。

常見的無理數有非完全平方數的平方根、π和e(其中後兩者均為超越數)等。無理數的另一特徵是無限的連分數表示式。

無理數是什麼

36樓:月半九九

無理數是指實數範圍內不能表示成兩個整數之比的數。簡單來說,無理數是無限不迴圈小數。如圓周率、√2(根號2)等。

無理數與有理數的區別:

實數分為有理數和無理數。有理數和無理數主要區別有兩點:

(1)有理數可分為整數(正整數、0、負整數)和分數(正分數、負分數)。把有理數和無理數都寫成小數形式時,有理數能寫成有限小數或無限迴圈小數,比如4=4.0;4/5=0.

8等等;也可分為正有理數(正整數、正分數),0,負有理數(負整數、負分數)。

而無理數只能寫成無限不迴圈小數,比如√2=1.4142...,π=3.1415926...,根據這一點,人們把無理數定義為無限不迴圈小數.

(2)所有的有理數都可以寫成兩個整數之比,而無理數卻不能寫成兩個整數之比.因此,無理數也叫做非比數。

37樓:五熙宛芮

無理數是實數中不能精確地表示為兩個整數之比的數,即無限不迴圈小數。

如圓周率、2的平方根等。

實數(real

munber)分為有理數和無理數(irrational

number)。

·無理數與有理數的區別:

1、把有理數和無理數都寫成小數形式時,有理數能寫成有限小數和無限迴圈小數,

比如4=4.0,

4/5=0.8,

1/3=0.33333……而無理數只能寫成無限不迴圈小數,

比如√2=1.414213562…………根據這一點,人們把無理數定義為無限不迴圈小數.

2、所有的有理數都可以寫成兩個整數之比;而無理數不能。根據這一點,有人建議給無理數摘掉「無理」的帽子,把有理數改叫為「比數」,把無理數改叫為「非比數」。本來嘛,無理數並不是不講道理,只是人們最初對它不太瞭解罷了。

利用有理數和無理數的主要區別,可以證明√2是無理數。

證明:假設√2不是無理數,而是有理數。

既然√2是有理數,它必然可以寫成兩個整數之比的形式:

√2=p/q

又由於p和q沒有公因數可以約去,所以可以認為p/q

為既約分數,即最簡分數形式。

把√2=p/q

兩邊平方

得2=(p^2)/(q^2)

即2(q^2)=p^2

由於2q^2是偶數,p

必定為偶數,設p=2m

由2(q^2)=4(m^2)

得q^2=2m^2

同理q必然也為偶數,設q=2n

既然p和q都是偶數,他們必定有公因數2,這與前面假設p/q是既約分數矛盾。這個矛盾是有假設√2是有理數引起的。因此√2是無理數。

無理數的證明方法,無理數的證明

歐幾里得 幾何原本 中提出了一種證明無理數的經典方法 證明 2是無理數。假設 2不是無理數。2是有理數。令 2 p q p q互質 兩邊平方得 2 p q 2 即 2 p 2 q 2 通過移項,得到 2 q 2 p 2 p 2必為偶數。p必為偶數。令p 2m則p 2 4m 2q 2 4m 2 化簡得...

全部無理數有哪些數,無理數有哪幾個。

實數分類 無理數是無限不迴圈小數。如圓周率 636f707962616964757a686964616f313333303536312 根號2 等。有理數是由所有分數,整陣列成,它們都可以化成有限小數,或無限迴圈小數。如22 7等。實數 real number 分為有理數和無理數 irrationa...

怎麼證明根號5是無理數

假設存在這樣一個有理數p,p 2 2.再設p a b,a b是兩正整數,且既約,就是沒有除1外的共因子,使得 a b 2 2 變形以後得a 2 2 b 2,推出a 2是個偶數,同時為了滿足a 2是個平方數,那b 2必須包含一個因子2,所以a 2 b 2不是既約的,那a b也不是既約的啦 與前提矛盾,...