設矩陣a,b及ab都可逆,a1b1a

2021-03-04 04:38:06 字數 1430 閱讀 4599

1樓:不追女的

^(a^bai-1)*(a+b)*(b^-1)=[(a^-1)*a+(a^-1)*b]*(b^-1)=[e+(a^-1)*b]*(b^-1)

=[(b^-1)+(a^-1)*b*(b^-1)]=(b^-1)+(a^-1)

這個結du論zhi挺有意思,不知道對解題

dao有什麼用。原來考研的專時候好像

屬沒怎麼看到這個結論的應用

設a,b,a+b都是可逆矩陣,試求:[a^(-1)+b^(-1)]^(-1)

2樓:匿名使用者

^^^a^(-1) + b^(-1)

= a^(-1)[i + ab^(-1)]= a^(-1)[bb^(-1) + ab^(-1)]= a^(-1)[b + a]b^(-1)[a^(-1) + b^(-1)]^(-1)= [a^(-1)[b + a]b^(-1)]^(-1)= [b^(-1)]^(-1)[b + a]^(-1)[a^(-1)]^(-1)

= b[b + a]^(-1)a

設a,b和a+b都是n階方陣,且都可逆,試證明矩陣a^-1+b^-1可逆,並求出它的可逆矩陣

3樓:匿名使用者

根據下圖的做法就可以湊出它的逆矩陣,可以有兩種表達形式。

線性代數求大神:設a,b,a+b,均為n階可逆矩陣,證明a^-1+b^-1為可逆矩陣,並求a^-1+b^-1的逆陣

4樓:電燈劍客

其實這已經很顯然了, 如果你實在想不出來按下面的方法試試先考慮a,b都是數的內情況容, 這時候比矩陣還多一個乘法交換律可用通分可得1/a+1/b=(a+b)/(ab)(這步做一下不虧的, 至少來說這是1階矩陣的結果, 你最後做完的結果必須與此相容)

但是這裡沒有乘法交換律, 那麼做通分的時候不能像普通的數那樣自由我們仍然採用通分的思路, 一步一步來

a^+b^=a^(i+ab^)

接下來b^應該從右側提取出來, 得到

a^(i+ab^)=a^(b+a)b^

這樣做就行了

設a,b,a+b,均為n階可逆矩陣,證明a^-1+b^-1為可逆矩陣,並寫出(a^-1+b^-1)^-1,寫出過程,謝謝

5樓:匿名使用者

^容易驗證

抄:(a^-1)(a+b)(b^-1)=b^-1+a^-1. **

由襲於可bai逆du陣zhi的逆陣

可逆,可逆陣的乘積可逆,由上式知dao:a^-1 +b^-1可逆.

再由性質:(ab)^-1=(b^-1)(a^-1)由(**)式,兩端取逆,得:

(a^-1 +b^-1)^-1=

=[(b^-1)]^-1}[(a+b)^-1][(a^-1)^-1]=(b)[(a+b)^-1](a)

矩陣A1B1為n階可逆矩陣

1 證明 若 a 可逆,根據 a的逆矩陣 與 a的伴隨矩陣 關係式a 1 a a 專 得伴隨矩陣為 a 屬a a 1 a 於是 a 1 a a 1 1 a a b 類似的,套用伴隨矩陣的公式 a 可得a 1 的伴隨矩陣是 a 1 a 1 a 1 1 1 a a a a c 由 b c 兩式可知 a ...

設A B是n階矩陣,且AB E及A都可逆,證明 AB E 的逆A為可逆的對稱陣

可按下圖證明,對稱陣之和也對稱,對稱陣的逆矩陣也對稱。可逆矩陣的逆矩陣也可逆,可逆矩陣的乘積也可逆。已知a和b都是n階矩陣,且e ab是可逆矩陣,證明e ba可逆 反證,若e ba不可逆,則存在x不為0,使 e ba x 0 方和有非零解 x bax 則 e ab ax ax abax ax ax ...

證明矩陣ab1b1a1b1a

這個題目有問題,a b的逆矩陣,一般不等於 b 1 a 1 b 1 a 1 設n階矩陣a和b滿足條件a b ab 1 證明a e為可逆矩陣 其中e是n階單位矩陣 2 已知b 1 30210002,解答過程如下 單位矩陣 在矩陣的乘法中,有一種矩陣起著特殊的作用,如同數的乘法中的1,這種矩陣被稱為單位...