高數fx在x0處有函式值,即f0A,則說明函式

2021-03-04 04:52:12 字數 3786 閱讀 5450

1樓:匿名使用者

y=|x| 在x=0處,左極限=右極限=函式值,連續,但左導數≠右導數,不可導。

一元函式中可導與可微等價,∴選c

高數問題 已知f(x)在x=0處連續,則a= 50

2樓:匿名使用者

^^lim(x->0) (cosx)^(1/x^2)=lim(x->0) [1+(cosx-1)]^[ 1/(cosx-1) * (cosx-1)/x^2 ]

=lim(x->0) ^ [(cosx-1)/x^2 ]∵lim(x->0) = e

lim(x->0) [(cosx-1)/x^2]=lim(x->0) [(-x^2/2)/x^2]= -1/2

=e^(-1/2)

∵ 在專x=0處連續,則屬: lim(x->0) (cosx)^(1/x^2) = f(0)

∴ a = e^(-1/2)

3樓:匿名使用者

^由連續bai性,a就是cosx^(1/x^2)的極限(x趨於

du0+)

容易知道zhi,cosx^(1/x^2)在0的一個右領dao域中回

是非負的,所以可以答對它求對數。

由於對數函式的連續性,ln a=(1/x^2)*ln cos x

ln cos x/x^2是0/0型的極限,由洛必達法則,它的極限等於上下求導後的極限:

lim(x->0+)(ln cos x/x^2)=lim(x->0+)(-tan x/2x)

lim(x->0+)(-tan x/2x)又是0/0型的極限,再次使用洛必達法則,上下求導取極限:

lim(x->0+)(-tan x/2x)=lim(x->0+)((-1/(cos x)^2)/2)=-1/2

所以,ln a=-1/2。即得答案。

4樓:匿名使用者

因為f(

x)在dux=0連續

所以a=lim(x->0) (cosx)^zhi(1/x^2)=lim(x->0)e^(ln(daocosx)/x^2)=e^lim(x->0)(ln(cosx)/x^2) 關鍵在這,這裡可以吧lim移到版指權數上去

ln(cosx)/x^2可以用洛必達

a=e^lim(x->0)(ln(cosx))』/(x^2)』=e^lim(x->0)((-1/2cosx)*(sinx/x))=e^-1/2

前面兩位的解答未免不夠嚴謹和簡練清晰。

這道題題目說f(x)在x=0的某領域內連續,沒說0這一點連續,為什麼可以根據極限得出f(0)=0? 70

5樓:裘珍

答:如果

說f(x)在x=a(本題是a=0的特例)的鄰域內連續,則x在a點是連續的,如果不連續,就加上「去心鄰域」了。也就是說,從函式從定義域來說,可能存在x≠0,但是從定義上,當x=0時,f(x)=0, 這樣就使得f(x)在其鄰域內連續了。因此,從說法上說的是函式在x=0的某鄰域內連續,就是在x=0點也是連續的(因為有定義);所謂某鄰域就是鄰域的半徑大小不確定,也可能很小,也可能是|x-a|<|b|,|c|,......。

因為是定義函式,f(x)不是具體的函式,不得已用比較函式來計算出f(0)的值,同時告訴讀者,-f(x)與(1-cosx)在x=0時,是等價無窮小。這樣,就確保了f(x)在x=0處,連續可導;同時保持了f(x)所代表的函式的廣泛性,也就是說,不止有一個f(x)具備這樣的條件,有無數個f(x)具備這樣的條件,不需要一個一個地列舉。

6樓:匿名使用者

lim(x->0) f(x)/[x(1-cosx)]分母->0

分子一定要 ->0 , 否則 極限不存在

lim(x->0) f(x)

=f(0)=0

7樓:若見難見

f(0)=0,不一定是奇函式

,如:f(x)=x2,滿足f(0)=0,但這明顯是個偶函式;

奇函式也不一定有f(0)=0,如:f(x)=1/x,這是一三象限的反比例函式,關於原點對稱,是奇函式,

但明顯沒有f(0)=0這一結論.

正確的說法是這樣的:對於奇函式而言,若0屬於定義域,則必有f(0)=0;

若f(0)≠0,則必有0不屬於定義域;

8樓:射手***白

鄰域是包括中心點的,

你想成去心鄰域了。望採納

9樓:築夢小卒

因為題目中那個極限分母趨向於0,而極限存在,則分子一定趨向於0,即f(0)

設函式f(x)在x=0處連續,下列命題錯誤的是( )a.若limx→0f(x)x存在,則f(0)=0b.若limx→0f(x)

10樓:匿名使用者

首先,由函式duf(x)在x=0處連續,zhi有limx→0f(x)=f(0),dao

所以,lim

x→0f(x)

x→f(0)0.

(內1)選項a.

若lim

x→0f(x)

x存在容,也就是x→0時,f(0)

0的極限存在,

如果f(0)≠0,則lim

x→0f(x)

x=∞,這樣一來,lim

x→0f(x)

x的極限也就不存在了,所以f(x)=0,

故選項a正確.

(2)選項b.

根據選項a的分析,同理選項b,由於lim

x→0[f(x)+f(?x)]=2f(0),因而也是成立的,故選項b正確.

(3)選項c.

由選項a,我們知道f(0)=0,

所以lim

x→0f(x)

x=lim

x→0f(x)?f(0)

x=f′(0),故f′(0)存在,

故選項c正確.

(4)選項d.

我們通過舉反例,比如:f(x)=|x|,顯然滿足題目條件,但f(x)在x=0處不可導,故選項d錯誤.故選:d.

高數題:1證明,如果函式f(x )當x →x0時極限存在,則f (x )在x0處的某一領域內有界

11樓:116貝貝愛

證明過程如下圖:

證明函式有界的方法:

利用函式連續性,直接將回

趨向值帶入函式自變數中,此時要答要求分母不能為0。

當分母等於零時,就不能將趨向值直接代入分母,因式分解,通過約分使分母不會為零。若分母出現根號,可以配一個因子使根號去除。

如果趨向於無窮,分子分母可以同時除以自變數的最高次方。(通常會用到這個定理:無窮大的倒數為無窮小)

採用洛必達法則求極限,當遇到分式0/0或者∞/∞時可以採用洛必達,其他形式也可以通過變換成此形式。符合形式的分式的極限等於分式的分子分母同時求導。

12樓:謝煒琛

|而|函式f(x )當x →x0時極限抄存在,不妨設bai:limf(x)=a(x →x0)

根據定義

du:對任意ε>0,存在δ>0,使當|zhix-x0|<δ時,有|f(x)-a|<ε

而|daox-x0|<δ即為x屬於x0的某個鄰域u(x0;δ)又因為ε有任意性,故可取ε=1,則有:|f(x)-a|<ε=1,即:a-10,當任意x屬於x0的某個鄰域u(x0;δ)時,有|f(x)|

證畢有不懂歡迎追問

13樓:

複製貼上一段

設x→x0時,f(x)→a

則對任意ε>0,存在δ>0,當 0<|x-x0|<δ時|f(x)-a|<ε

即 a-ε

這說明f(x)在那去心領域是有界的

函式fx在x0處可導,則fx在點x0處的左右導數是

左倒數為f x x0 右倒數為f x x0 且左倒數 右倒數 函式f x 在x x0處左右導數均存在,則f x 在x x0處連續,為什麼。左導數存在左連續,右導數存在右連續 左右導數均存在,左右均連續,所以 f x 在x x0處連續 f x 在x0處連續的充分必要條件是f x 在x0既左連續又右連續...

設fx在x0處可導,且fx為偶函式求證f

右導數lim dux zhi0 f 0 daox f 0 x lim x 版0 f x f 0 x 左導數權 lim x 0 f 0 x f 0 x 代換 x x lim x 0 f x f 0 x f x 偶函式 lim x 0 f x f 0 x f x 在x 0處可導 則左導數 右導數 導數 ...

什麼是fx在x0處連續,fx在點x0處可導是fx在點x0處連續的

如圖,f x 在x0連續的充要條件是f x 在x0的左右極限和該函式在x0處的值相等。f x 在點x0處可導是f x 在點x0處連續的 f x 在點x0處可導是f x 在點x0處連續的 充分條件 可導一定連續,連續卻未必可導。肯定可以的。首先函式在這個點二階可導。說明函式在一階領域皆可導,既然一階導...