導數到底什麼是導數?給句大白話,詳細點,還有什麼極限,我認

2021-03-05 09:17:27 字數 6217 閱讀 8981

1樓:我nai真神

導數就是斜率

一個波動的線連線一頭一尾有條直線,這個直線的斜率反映的就是從這個線的頭到線的尾整體的變化。可是這是沒用的,比如你從廣州去北京,怎麼去都不一樣,但是連線廣州北京就一條線,所以根本反映不了問題。

那麼就要縮短研究的跨度,我們把這個跨度縮小,縮小到很小,就上面這個例子,有的人從廣州去北京,先往南走一分鐘,有的先往東走一分鐘,這一分鐘對於整個過程來說是極小的,但是卻本質上的反映了兩條路的趨勢。

由於太小了,你根本變化不了多少,所以我們覺得這段時間大家走的都是線性的,這個小要多小呢?沒錯,這個是不存在的,多小都不算小,0.000000000000000000000000001也不算小,所以極限是一種假想的程度,是不存在的。

那麼怎麼理解導數呢?你可以理解為這個函式曲線是一個具體的彎曲的物體,你在他其中一個點上擺上一個木條,這個木條在這個點指向哪,哪就是他的導數,換句話說,有點像切線。

2樓:窩巢真赤激

導數簡單點說,就是函式的斜率。比如說y=x這個函式,影象你應該很清楚吧,雖然y是隨著x的正加而增大的,但是其變化率也就是斜率是一直不變的。那麼你能猜出來y=x的導數是多少麼?

y=x的導數y'=1,同理y=2x時,則y'=2,這是最簡單的。當函式是2次函式的時候,其斜率會忽大忽小,甚至忽正忽負,這時y'不再是一個固定的數,而是一個根據x值變化的數(說白了也是一個函式)

多元函式在某一點極限不存在,那麼這點偏導數是否存在?還有偏導數存在是趨於一個方向偏導數存在還是所有

3樓:匿名使用者

多元函式在某一點的極限不存在可以說明在這個點處不連續,但不能說明在這個點的偏導數不存在,例如分段函式f(x,y)=xy/(x^2+y^2),x^2+y^2不等於0,f(x,y)=0,x^2+y^2=0這個函式在點(0,0)處的偏導數極限不存在,但他在(0,0)處的偏導數值是存在的,fx(0,0)=fy(0,0)=0。希望以後回答別人問題的人能先弄清正確答案,不要想當然,這樣不光會誤導問問題的人還會影響後面看到這個問題的人,我看了前一位大佬的回答後就被誤導了,後來問了高數老師才明白

4樓:匿名使用者

多元函式在某一點極限不存在,則在此點不連續,故不存在偏導數,偏導數是指沿某一個固定方向的導數,不是所有方向。fx(x,y)=fy(x,y)=常數a不能證明此點在某一方向的偏導數存在或不存在。

5樓:綰綰

極限不存在,偏導數可能存在。例如f(x,y)={xy/(x²+y²),(x,y)不=(0,0) 0,(x,y)=(0,0).

它的極限不存在,但是偏導數存在。

什麼是導數不存在的點

6樓:匿名使用者

倒數不存在的點即為無法求導的點,通常有兩種情況,一種函式在該點不連續,另一種是在該點連續但左右導數不相等。詳細說明如下:

1、函式在該點有斷點的時候,函式不連續就無法求導。

若某函式在某一點導數存在,則稱其在這一點可導,否則稱為不可導。然而,可導的函式一定連續;不連續的函式一定不可導。

2、函式在該點連續,但在該點的左右導數不相等。如y=|x|,在x=0處連續,在x處的左導數為-1,右導數為1,但左右不相等,則函式在x=0不可導。

導數是函式的區域性性質。一個函式在某一點的導數描述了這個函式在這一點附近的變化率。如果函式的自變數和取值都是實數的話,函式在某一點的導數就是該函式所代表的曲線在這一點上的切線斜率。

導數的計算

計算已知函式的導函式可以按照導數的定義運用變化比值的極限來計算。在實際計算中,大部分常見的解析函式都可以看作是一些簡單的函式的和、差、積、商或相互複合的結果。只要知道了這些簡單函式的導函式,那麼根據導數的求導法則,就可以推算出較為複雜的函式的導函式。

導數的求導法則

由基本函式的和、差、積、商或相互複合構成的函式的導函式則可以通過函式的求導法則來推導。基本的求導法則如下:

1、求導的線性:對函式的線性組合求導,等於先對其中每個部分求導後再取線性組合(即①式)。

2、兩個函式的乘積的導函式:一導乘二+一乘二導(即②式)。

3、兩個函式的商的導函式也是一個分式:(子導乘母-子乘母導)除以母平方(即③式)。

4、如果有複合函式,則用鏈式法則求導。

7樓:zhang登雲

導數不存在的點就是在該點不可導.一個函式可導的充分必要條件是它的左導數和右導數都存在並且相等.由此可以判斷是否可導.舉例,f(x)=絕對值x,x屬於r.該函式在r上連續,但在x=0點導數不存在(即不可導),因為它的左導數(-1)和右導數(1)不相等.畫圖以後就更明瞭了

8樓:匿名使用者

某區間內的一個函式,它的導數稱導函式。導數不存在的點就是在該點不可導。「zhang登雲」 已經回答了,就是他的答案。

9樓:匿名使用者

導數不存在的點就是在該點不可導.

導數到底是什麼意思啊,還有到底怎麼求一個函式的導數,有沒有具體的公式

10樓:是你找到了我

導數也叫導函式值,又名微商,即當函式y=f(x)的自變數x在一點x0上產生一個增量δx時,函式輸出值的增量δy與自變數增量δx的比值在δx趨於0時的極限a如果存在,a即為在x0處的導數,記作f'(x0)或df(x0)/dx。

基本的求導法則如下:

1、求導的線性:對函式的線性組合求導,等於先對其中每個部分求導後再取線性組合。

2、兩個函式的乘積的導函式:一導乘二+一乘二導。

3、兩個函式的商的導函式也是一個分式:(子導乘母-子乘母導)除以母平方。

4、如果有複合函式,則用鏈式法則求導。

11樓:小小芝麻大大夢

導數(derivative),也叫導函式值。又名微商,是微積分中的重要基礎概念。當函式y=f(x)的自變數x在一點x0上產生一個增量δx時,函式輸出值的增量δy與自變數增量δx的比值在δx趨於0時的極限a如果存在,a即為在x0處的導數,記作f'(x0)或df(x0)/dx。

導數的求法有公式可以套用,複合函式導數的求法為:

鏈式法則,若h(a)=f[g(x)],則h'(a)=f』[g(x)]g』(x)

鏈式法則用文字描述,就是「由兩個函式湊起來的複合函式,其導數等於裡函式代入外函式的值之導數,乘以裡邊函式的導數。」

擴充套件資料:

商的導數公式:

(u/v)'=[u*v^(-1)]'

=u' * [v^(-1)] +[v^(-1)]' * u

= u' * [v^(-1)] + (-1)v^(-2)*v' * u

=u'/v - u*v'/(v^2)

通分,易得

(u/v)=(u'v-uv')/v²

常用導數公式:

1.y=c(c為常數) y'=0

2.y=x^n y'=nx^(n-1)

3.y=a^x y'=a^xlna,y=e^x y'=e^x

4.y=logax y'=logae/x,y=lnx y'=1/x

5.y=sinx y'=cosx

6.y=cosx y'=-sinx

7.y=tanx y'=1/cos^2x

8.y=cotx y'=-1/sin^2x

9.y=arcsinx y'=1/√1-x^2

12樓:—尤—欲不絕

當然有具體公式

1.y=c(c為常數) y'=0

2.y=x^n y'=nx^(n-1)

3.y=a^x y'=a^xlna

y=e^x y'=e^x

4.y=logax y'=logae/x

y=lnx y'=1/x

5.y=sinx y'=cosx

6.y=cosx y'=-sinx

7.y=tanx y'=1/cos^2x

8.y=cotx y'=-1/sin^2x9.y=arcsinx y'=1/√1-x^210.

y=arccosx y'=-1/√1-x^211.y=arctanx y'=1/1+x^212.y=arccotx y'=-1/1+x^2這些是用多了背下來了才能一眼看出來

13樓:空白の才の法則

有的 全是公式。。。

導數就是 比如 y=x^2 在x=4處的斜率就可以通過導數來求

導函式為 y=2x 這個是公式一樣的東西 然後把x=4帶進去 y=8 那麼y=x^2在x=4時的斜率就是8

14樓:匿名使用者

導數可以描述曲線的斜率,根據求出導數的正負直可以判斷原函式數的增減性。求導數,一般根據公式,如:(x^n)=n*x^n-1 a^x=a^x*lna 等等

15樓:匿名使用者

導數的幾何意義 是一個連續函式的影象的任意點 (x,y)的切線斜率 與 x的函式

導數 不難 導數的逆運算 積分較難

16樓:匿名使用者

記下公式就行了,記熟了你一眼也可以看出來。導數就是斜率,比如說速度的導數是加速度

17樓:紫獄試煉

如果是高中生的話,記下公式就好了,沒必要推導。

18樓:匿名使用者

高中階段導數只有公式算得出來,教科書上全是公式啊!翻翻。

至於一眼看出導數,做幾道題之後你也可以!

導數怎麼推的這些書上全是,說白了就是斜率。

19樓:薛斌海浩

求一個函式的導數是有一定的公式的,例如求x的平方,結果就是2x,至於導數究竟是什麼意思估計是你現在還沒有學到,這個不用追究的,高三課本上講的

20樓:陳薈全

真的有公式。。嘿嘿 導數很重要的。。記住公式 應該就沒問題了。。。你可以推二次函式的 其他的就比較難了

什麼是導數?

21樓:縱橫豎屏

當函式y=f(x)的自變數x在一點x0上產生一個增量δx時,函式輸出值的增量δy與自變數增量δx的比值在δx趨於0時的極限a如果存在,a即為在x0處的導數,記作f'(x0)或df(x0)/dx。

導數是函式的區域性性質。一個函式在某一點的導數描述了這個函式在這一點附近的變化率。如果函式的自變數和取值都是實數的話,函式在某一點的導數就是該函式所代表的曲線在這一點上的切線斜率。

導數的本質是通過極限的概念對函式進行區域性的線性逼近。例如在運動學中,物體的位移對於時間的導數就是物體的瞬時速度。

不是所有的函式都有導數,一個函式也不一定在所有的點上都有導數。若某函式在某一點導數存在,則稱其在這一點可導,否則稱為不可導。然而,可導的函式一定連續;不連續的函式一定不可導。

對於可導的函式f(x),x↦f'(x)也是一個函式,稱作f(x)的導函式(簡稱導數)。尋找已知的函式在某點的導數或其導函式的過程稱為求導。

實質上,求導就是一個求極限的過程,導數的四則運演算法則也**於極限的四則運演算法則。反之,已知導函式也可以倒過來求原來的函式,即不定積分。

微積分基本定理說明了求原函式與積分是等價的。求導和積分是一對互逆的操作,它們都是微積分學中最為基礎的概念。

擴充套件資料:

導數與函式的性質:

單調性:

(1)若導數大於零,則單調遞增;若導數小於零,則單調遞減;導數等於零為函式駐點,不一定為極值點。需代入駐點左右兩邊的數值求導數正負判斷單調性。

(2)若已知函式為遞增函式,則導數大於等於零;若已知函式為遞減函式,則導數小於等於零。

根據微積分基本定理,對於可導的函式,有:

如果函式的導函式在某一區間內恆大於零(或恆小於零),那麼函式在這一區間內單調遞增(或單調遞減),這種區間也稱為函式的單調區間。

導函式等於零的點稱為函式的駐點,在這類點上函式可能會取得極大值或極小值(即極值可疑點)。進一步判斷則需要知道導函式在附近的符號。

對於滿足的一點,如果存在使得在之前區間上都大於等於零,而在之後區間上都小於等於零,那麼是一個極大值點,反之則為極小值點。

x變化時函式(藍色曲線)的切線變化。函式的導數值就是切線的斜率,綠色代表其值為正,紅色代表其值為負,黑色代表值為零。

凹凸性:

可導函式的凹凸性與其導數的單調性有關。如果函式的導函式在某個區間上單調遞增,那麼這個區間上函式是向下凹的,反之則是向上凸的。

如果二階導函式存在,也可以用它的正負性判斷,如果在某個區間上恆大於零,則這個區間上函式是向下凹的,反之這個區間上函式是向上凸的。曲線的凹凸分界點稱為曲線的拐點。

導數到底是幹嘛的導數是用來幹什麼的?

導數指的是函式的變化率,也就是x變了y能變得多快。x,y,y 的關係就是時間,路程,速度的關係導數有什麼用.求切線要用導數,判斷單調性要用導數 不用導數會很麻煩.高考.一般至少有一道大題是要用導數的.前面的題也可能出現導數 高中導數是簡單的,用的較多就是與斜率有關和曲 邊梯形面積等,學習導數是為以後...

求導數(給我解釋解釋行不行),為什麼速度是導數?求解釋

複合函式求導 外層函式的導數乘以內層函式的導數外層函式 y f u 內層函式 u lnx 所以複合函式的導數 f u 導 lnx 導比如說 y f u u 的話,而u lnx的話y lnx y的導數就是 f u 導 u導 u 導 lnx導 2lnx 1 x 2lnx x 對 y f lnx 求導 解...

1000Q的導數,什麼是導數

如果q是自變數,則導數 1000 q 2.什麼是導數?當函式y f x 的自變數x在一點x0上產生一個增量 x時,函式輸出值的增量 y與自變數增量 x的比值在 x趨於0時的極限a如果存在,a即為在x0處的導數,記作f x0 或df x0 dx。導數是函式的區域性性質。一個函式在某一點的導數描述了這個...