1樓:匿名使用者
我的解答這麼簡單,為什麼不採納我的啊!!!!!!!
2樓:匿名使用者
設g(x)=3f'(x)+2f(x),顯然g(x)在[a,b]連續;①如果f(x)=c(c為常數),則f'(x)=0,f(x)=c=f(b)=0,所以g(x)=0,即對任意k∈(a,b),均滿e68a8462616964757a686964616f31333330363831足3f'(k)+2f(k)=0;②如果f(x)≠c,則根據洛爾定理,至少存在一點x0∈(a,b),滿足f'(x0)=0,不妨設x0是所有滿足f'(x)=0[x∈(a,b)]最靠近b點的一點,所以在區間(x0,b),f'(x)不變號[否則存在x1∈(x0,b),滿足f'(x1)=0,這和x0最靠近b點的假定矛盾!],即在區間(x0,b),f'(x)>0和f'(x)<0二者必居其一;所以在區間(x0,b),f(x)嚴格單調;又因f(b)=0,所以在區間(x0,b),f(x)≠0;另外f'(x)可以表示成如下形式:f'(x)=f(x)/(x-x'),式中x'為f(x)在x處的切線和x軸的交點,所以g(x)可表示成如下形式:
g(x)=3f'(x)+2f(x)=3f(x)/(x-x)+2f(x)=f(x)[3/(x-x')+2],令g(x)=0,即f(x)[3/(x-x')+2]=0,因在區間(x0,b),f(x)≠0,所以3/(x-x')+2=0,即x-x'=-3/2,所以本題等效為在區間(x0,b)尋找該式的解;顯然當x∈(x0,b)時,x-x'∈(-∞,0),所以在區間(x0,b)必有一點k,滿足k-k'=-3/2;因此存在k∈(x0,b),即k∈(a,b),使得3f'(k)+f(k)=0(證畢)。
3樓:匿名使用者
這個可以麼?...
設f(x),g(x)在[a,b]上連續,在(a,b)內可導,且f(a)=f(b)=0,證明至少存在一點ξ∈(a,b)....
4樓:匿名使用者
證明:很簡單copy啊,用羅爾定理證明
設f(x)=xf(x),顯然函式f(x)在區間[a,b]上連續,在(a,b)內可導,
且f(a)=af(a)=0,f(b)=bf(b)=0,即f(a)=f(b)
所以根據羅爾定理,在(a,b)內至少存在一點ξ,使得f′(ξ)=f(ξ)+ξf′(ξ)=0.
故得證.
5樓:數迷
建構函式f(x)=f(x)g(x)
則f'(x)=f'(x)g(x)+f(x)g'(x)
顯然f(x)滿足羅爾定理的條件故結論成立
6樓:匿名使用者
令f(x)=f(x)*g(x) f'(x)=f '(x)g(x)+f(x)g '(x)
顯然f(a)=f(a)*g(a)=0
f(x)=f(b)*g(b)=0
因為f(x),g(x)在[a,b]上連續,在(a,b)內可導回,所以f(x)在[a,b]上連續,在(a,b)內可導
所以存在 ξ答
屬於(a,b),使得f'(ξ)=0
即f '(ξ)g(ξ)+f(ξ)g '(ξ)=0
設函式f(x)在區間[a,b]上連續,且f(a)b。證明存在ξ∈(a,b),使得f(ξ)=ξ
7樓:
令g(x)=f(x)-x,由題意知g(x)連續g(a)=f(a)-a<0,g(b)=f(b)-b>0∴g(a)g(b)<0
∴根據零點定理可以知道存在ξ∈(a,b),使得g(ξ)=0,即 f(ξ)-ξ =0,得證。
零點定理:
設函式f(x)在[a,b]上連續,且f(a)f(b)<0,則存在ξ∈(a,b),使得f(ξ)=ξ
8樓:匿名使用者
證明:記f(x)=f(x)-x,顯然它在[a,b]上連續且f(a)=f(a)-a<0,f(b)=f(b)-b>0由連續函式介值定理知存在ξ∈(a,b),使得f(ξ)=f(ξ)-ξ=0
即存在ξ∈(a,b),使得f(ξ)=ξ,命題得證。
9樓:匿名使用者
高等數學,課本上好像有證明過程,以前證過,現在忘了!不好意思!
設f(x)在[a,b]上連續,且f(x)>0,證明:至少存在一點ξ∈(a,b),使得∫f(x)dx=
10樓:援手
令g(x)=∫f(t)dt*∫f(t)dt(第一個積分限a到x,第二個積分限x到b),根據變上限積分的求導法則,g'(x)=f(x)∫f(t)dt(積分限x到b)-f(x)∫f(t)dt(積分限a到x),由於g(a)=g(b)=[∫f(t)dt]^2(積分限a到b),根據羅爾定理,存在ξ∈(a,b)使得g'(ξ)=0,即f(ξ)∫f(t)dt(積分限ξ到b)-f(ξ)∫f(t)dt(積分限a到ξ),由於f(ξ)>0,上式兩邊除f(ξ)即得要證的等式。
這種題關鍵就在於構造輔助函式,一般將要證的式子變形,其中有ξ的地方換成x,為了用羅爾定理,就要讓輔助函式在區間端點的函式值相等,且想辦法讓輔助函式的導函式等於0時的表示式和要證的等式儘可能相似。
設函式f(x)在閉區間上連續,且f(x)0,則方程xaf t dt xb1f t dt 0在開區間(a,b)內的
解 設f x xa f t dt xb 1f t dt,則f x 在x a,b 連續,並且f a ab1f t dt,f b ba f t dt 而f x 0,x a,b 內f a 容0,f b 0 根據零點定理有,至少存在一點 a,b 使得 f 0又f x f x 1 f x 0,x a,b f ...
設函式fx在上連續,在a,b上可導,且f
limx趨於baia正du f 3x 2a x a存在 f a limx趨於zhia正 f dao3x 2a limx趨於a正 f 3x 2a x a limx趨於a正 x a 0f x 0 f x 是遞版增函式權。a,b 內 f x f a 0 設函式f x 在 a,b 上連續,在 a,b 上可導...
設f(x)是定義在上的奇函式,且在區間(0上單調遞增,若f120,三
f x 是定義在bai du zhi 上的奇dao 函式,且回在區間 0,上單調遞增,f x 在答區間 0 上也單調遞增 f 1 2 0,f 1 2 0 當a為銳角時,cosa 0,不等式f cosa 0變形為f cosa f 1 2 0 cosa 1 2 3 a 2 當a為直角時,cosa 0,而...