二次函式的影象與性質,二次函式的影象與性質

2021-03-11 12:28:37 字數 5838 閱讀 5001

1樓:匿名使用者

a:a分為兩部分:符號和大小(即絕對值)

符號:正號說明開口向上,專負號說明開口

向下大小:a的絕屬對值越大,拋物線開口越小(瘦)。a的絕對值越小,拋物線開口越大(胖)。

b:b不能單獨判斷,要與a結合判斷,有個口訣心法:左同右異(左右是指拋物線對稱軸在x軸的左右,同異是指a、b的符號是同號還是異號)。

就是說,如果對稱軸在x軸的左側,則a、b同號;如果對稱軸在x軸的右側,則a、b異號;由於a的符號在上面已經說了,所以b也就不難判斷了。值得一提的是如果對稱軸是y軸,則b=0

對稱軸公式:x=-b\2a

c:c表示拋物線與y軸的交點,影象過(0,c)點。如果拋物線通過原點,則c=0

2樓:匿名使用者

i.定義與定義表示式

一般地,自變數x和因變數y之間存在如下關係:

y=ax^2+bx+c(a,b,c為常數,a≠0,且a決定函式的開口方向,a>0時,開口方向向上,a<0時,開口方向向下,iai還可以決定開口大小,iai越大開口就越小,iai越小開口就越大.)

則稱y為x的二次函式。

二次函式表示式的右邊通常為二次三項式。

ii.二次函式的三種表示式

一般式:y=ax^2;+bx+c(a,b,c為常數,a≠0)

頂點式:y=a(x-h)^2;+k [拋物線的頂點p(h,k)]

交點式:y=a(x-x1)(x-x2) [僅限於與x軸有交點a(x1,0)和 b(x2,0)的拋物線]

注:在3種形式的互相轉化中,有如下關係:

h=-b/2a k=(4ac-b^2;)/4a x1,x2=(-b±√b^2;-4ac)/2a

iii.二次函式的影象

在平面直角座標系中作出二次函式y=x²的影象,

可以看出,二次函式的影象是一條拋物線。

iv.拋物線的性質

1.拋物線是軸對稱圖形。對稱軸為直線

x = -b/2a。

對稱軸與拋物線唯一的交點為拋物線的頂點p。

特別地,當b=0時,拋物線的對稱軸是y軸(即直線x=0)

2.拋物線有一個頂點p,座標為

p [ -b/2a ,(4ac-b^2;)/4a ]。

當-b/2a=0時,p在y軸上;當δ= b^2-4ac=0時,p在x軸上。

3.二次項係數a決定拋物線的開口方向和大小。

當a>0時,拋物線向上開口;當a<0時,拋物線向下開口。

|a|越大,則拋物線的開口越小。

4.一次項係數b和二次項係數a共同決定對稱軸的位置。

當a與b同號時(即ab>0),對稱軸在y軸左;

當a與b異號時(即ab<0),對稱軸在y軸右。

5.常數項c決定拋物線與y軸交點。

拋物線與y軸交於(0,c)

6.拋物線與x軸交點個數

δ= b^2-4ac>0時,拋物線與x軸有2個交點。

δ= b^2-4ac=0時,拋物線與x軸有1個交點。

δ= b^2-4ac<0時,拋物線與x軸沒有交點。

v.二次函式與一元二次方程

特別地,二次函式(以下稱函式)y=ax^2;+bx+c,

當y=0時,二次函式為關於x的一元二次方程(以下稱方程),

即ax^2;+bx+c=0

此時,函式影象與x軸有無交點即方程有無實數根。

函式與x軸交點的橫座標即為方程的根。

【【不清楚,再問;滿意, 請採納!祝你好運開☆!!】】

二次函式的影象和性質是什麼?

3樓:不讓風吹的歲月

拋物線是軸對稱圖形。對稱軸為直線x = -b/2a。

對稱軸與拋物線唯一的交點為拋物線的頂點p。

特別地,當b=0時,拋物線的對稱軸是y軸(即直線x=0)

2.拋物線有一個頂點p,座標為p ( -b/2a ,(4ac-b^2)/4a )

當-b/2a=0時,p在y軸上;當δ= b^2-4ac=0時,p在x軸上。

3.二次項係數a決定拋物線的開口方向和大小。

當a>0時,拋物線向上開口;當a<0時,拋物線向下開口。

|a|越大,則拋物線的開口越小。

4.一次項係數b和二次項係數a共同決定對稱軸的位置。

當a與b同號時(即ab>0),對稱軸在y軸左; 因為若對稱軸在左邊則對稱軸小於0,也就是- b/2a<0,所以b/2a要大於0,所以a、b要同號

當a與b異號時(即ab<0),對稱軸在y軸右。因為對稱軸在右邊則對稱軸要大於0,也就是- b/2a>0, 所以b/2a要小於0,所以a、b要異號

可簡單記憶為左同右異,即當a與b同號時(即ab>0),對稱軸在y軸左;當a與b異號時

(即ab< 0 ),對稱軸在y軸右。

事實上,b有其自身的幾何意義:拋物線與y軸的交點處的該拋物線切線的函式解析式(一次函式)的

斜率k的值。可通過對二次函式求導得到。

5.常數項c決定拋物線與y軸交點。

拋物線與y軸交於(0,c)

6.拋物線與x軸交點個數

δ= b^2-4ac>0時,拋物線與x軸有2個交點。

δ= b^2-4ac=0時,拋物線與x軸有1個交點。

_______

δ= b^2-4ac<0時,拋物線與x軸沒有交點。x的取值是虛數(x= -b±√b^2-4ac 的值的相反數,乘上

虛數i,整個式子除以2a)

當a>0時,函式在x= -b/2a處取得最小值f(-b/2a)=4ac-b²/4a;在上是減函式,在

上是增函式;拋物線的開口向上;函式的值域是相反不變

當b=0時,拋物線的對稱軸是y軸,這時,函式是偶函式,解析式變形為y=ax^2+c(a≠0)

7.特殊值的形式

①當x=1時 y=a+b+c

②當x=-1時 y=a-b+c

③當x=2時 y=4a+2b+c

④當x=-2時 y=4a-2b+c

8.定義域:r

值域:(對應解析式,且只討論a大於0的情況,a小於0的情況請讀者自行推斷)①[(4ac-b^2)/4a,

正無窮);②[t,正無窮)

奇偶性:偶函式

週期性:無

解析式:

①y=ax^2+bx+c[一般式]

⑴a≠0

⑵a>0,則拋物線開口朝上;a<0,則拋物線開口朝下;

⑶極值點:(-b/2a,(4ac-b^2)/4a);

⑷δ=b^2-4ac,

δ>0,圖象與x軸交於兩點:

([-b-√δ]/2a,0)和([-b+√δ]/2a,0);

δ=0,圖象與x軸交於一點:

(-b/2a,0);

δ<0,圖象與x軸無交點;

②y=a(x-h)^2+k[頂點式]

此時,對應極值點為(h,k),其中h=-b/2a,k=(4ac-b^2)/4a;

③y=a(x-x1)(x-x2)[交點式(雙根式)](a≠0)

對稱軸x=(x1+x2)/2 當a>0 且x≥(x1+x2)/2時,y隨x的增大而增大,當a>0且x≤(x1+x2)/2時y隨x

的增大而減小

此時,x1、x2即為函式與x軸的兩個交點,將x、y代入即可求出解析式(一般與一元二次方程連

用)。[編輯本段]二次函式與一元二次方程

特別地,二次函式(以下稱函式)y=ax^2+bx+c,

當y=0時,二次函式為關於x的一元二次方程(以下稱方程),

即ax^2+bx+c=0

此時,函式影象與x軸有無交點即方程有無實數根。

函式與x軸交點的橫座標即為方程的根。

1.二次函式y=ax^2;,y=a(x-h)^2;,y=a(x-h)^2+k,y=ax^2+bx+c(各式中,a≠0)的圖象形狀相同,只是位置不同,它們的頂點座標及對稱軸如下表:

解析式 頂點座標 對 稱 軸

y=ax^2 (0,0) x=0

y=ax^2+k (0,k) x=0

y=a(x-h)^2 (h,0) x=h

y=a(x-h)^2+k (h,k) x=h

y=ax^2+bx+c (-b/2a,4ac-b^2/4a) x=-b/2a

當h>0時,y=a(x-h)^2;的圖象可由拋物線y=ax^2;向右平行移動h個單位得到,

當h<0時,則向左平行移動|h|個單位得到.

當h>0,k>0時,將拋物線y=ax^2;向右平行移動h個單位,再向上移動k個單位,就可以得到y=a(x-h)^2+k的圖象;

當h>0,k<0時,將拋物線y=ax^2;向右平行移動h個單位,再向下移動|k|個單位可得到y=a(x-h)^2-k的圖象;

當h<0,k>0時,將拋物線向左平行移動|h|個單位,再向上移動k個單位可得到y=a(x+h)²+k的圖象;

當h<0,k<0時,將拋物線向左平行移動|h|個單位,再向下移動|k|個單位可得到y=a(x+h)²-k的圖象;在向上或向下.向左或向右平移拋物線時,可以簡記為「上加下減,左加右減」。

因此,研究拋物線 y=ax^2+bx+c(a≠0)的圖象,通過配方,將一般式化為y=a(x-h)^2;+k的形式,可確定其頂點座標、對稱軸,拋物線的大體位置就很清楚了.這給畫圖象提供了方便.

2.拋物線y=ax^2+bx+c(a≠0)的圖象:當a>0時,開口向上,當a<0時開口向下,對稱軸是直線x=-b/2a,頂點座標是(-b/2a,[4ac-b^2;]/4a).

3.拋物線y=ax^2+bx+c(a≠0),若a>0,當x ≤ -b/2a時,y隨x的增大而減小;當x ≥ -b/2a時,y隨x的增大而增大.若a<0,當x ≤ -b/2a時,y隨x的增大而增大;當x ≥ -b/2a時,y隨x的增大而減小.

4.拋物線y=ax^2+bx+c的圖象與座標軸的交點:

(1)圖象與y軸一定相交,交點座標為(0,c);

(2)當△=b^2-4ac>0,圖象與x軸交於兩點a(x₁,0)和b(x₂,0),其中的x1,x2是一元二次方程ax^2+bx+c=0

(a≠0)的兩根.這兩點間的距離ab=|x₂-x₁| =√△/∣a∣(a絕對值分之根號下△)另外,拋物線上任何一對對稱點的距離可以由|2×(-b/2a)-a |(a為其中一點的橫座標)

當△=0.圖象與x軸只有一個交點;

當△<0.圖象與x軸沒有交點.當a>0時,圖象落在x軸的上方,x為任何實數時,都有y>0;當a<0時,圖象落在x軸的下方,x為任何實數時,都有y<0.

5.拋物線y=ax^2+bx+c的最值:如果a>0(a<0),則當x= -b/2a時,y最小(大)值=(4ac-b^2)/4a.

頂點的橫座標,是取得最值時的自變數值,頂點的縱座標,是最值的取值.

6.用待定係數法求二次函式的解析式

(1)當題給條件為已知圖象經過三個已知點或已知x、y的三對對應值時,可設解析式為一般形式:

y=ax^2+bx+c(a≠0).

(2)當題給條件為已知圖象的頂點座標或對稱軸或極大(小)值時,可設解析式為頂點式:y=a(x-h)^2+k(a≠0).

(3)當題給條件為已知圖象與x軸的兩個交點座標時,可設解析式為兩根式:y=a(x-x₁)(x-x₂)(a≠0).

7.二次函式知識很容易與其它知識綜合應用,而形成較為複雜的綜合題目。因此,以二次函式知識為主的綜合性題目是中考的熱點考題,往往以大題形式出現.

參見

二次函式的影象和性質,二次函式的性質和影象

令x 0得y m 2 交點在x軸的上方,則有 m 2 0,m 2在x軸的下方,則有m 2 0,m 2 拋物線經過原點,m 2 0,m 2 二次函式的性質和影象 1 二次函式 的性質 特別地,二次函式 以下稱函式 y ax2 bx c a 0 當y 0時,二次函式為關於x的一元二次方程 以下稱方程 即...

二次函式比二次函式的影象,二次函式的影象怎樣區分a,b,c大於0還是小於

這一題的定義域為r,分兩種情況 一是當x 0,y 0 二是x不等於零,分子分母同時除以x 2,可得y 1 3 x 2 2 x 1 此時分母位置是一個一元二次函式,求其最值即可,你對此應該熟悉吧 這樣的問題,可能沒有固定的性質 但可以大致討論一下,不外乎有幾種情況 1分母的判別式 0 這時,求y 根據...

二次函式的求導,二次函式如何求導

y 6x 2 5x 3的導式 y 12x 5 二次函式的求導 設二次函式為y ax 2 bx c 則y ax 2 bx c ax 2 bx c 2ax b 求導的作用是什麼 導數一般可以用來描述函式的值域的變化情況,負值則為遞減,正值則為遞增。導數為0時,為極大值或極小值,一般用 法看出。曲線的變化...